Physicochemical and sensory properties of fermented dairy beverages made with goat's milk, cow's milk and a mixture of the two milks

LWT ◽  
2013 ◽  
Vol 54 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Jacieny Janne Leite Gomes ◽  
Andreza Moraes Duarte ◽  
Ana Sancha Malveira Batista ◽  
Rossana Maria Feitosa de Figueiredo ◽  
Elisabete Piancó de Sousa ◽  
...  
Author(s):  
Duygu Benzer Gürel ◽  
Merve Ildız ◽  
Serdal Sabancı ◽  
Nurcan Koca ◽  
Özlem Çağındı ◽  
...  

In recent years, demand for products produced with goat milk has been increasing. On the other hand, compared to cow's milk, component and flavour differences in goat milk can cause significant differences in the properties of products produced with goat's milk and affect the acceptability of the product. In this study, it was aimed to compare the antioxidant capacity, rheological and sensory properties of kefir produced with goat milk with those properties of kefir produced of cow milk. In this context, cow milk, goat milk and 1: 1 ratio of cow and goat milk kefir were produced, physico-chemical, rheological and sensory analyses were performed. It was determined that the rheological properties of all kefir samples exhibit pseudoplastic behaviour and are compatible with the power-law model. The apparent viscosity of the kefir produced by the goat milk was lower than cow milk kefir. It was determined that the total antioxidant capacity of goat milk kefir was higher than cow's milk kefir and a and b values were lower in colour. On the other hand, in goat milk kefir, panellists perceived lower consistency and kefir flavour, also its overall acceptability score was lower. The addition of 50% cow's milk to goat's milk influenced the condition of goat's milk. The sensory properties of the mixture milk kefir were similar to the sensory properties of the cow's milk kefir. Although the mixture kefir positive results, it has been concluded that further studies are needed to obtain better consistency and flavour in kefir production from goat milk.


Author(s):  
Mourad HAMIROUNE ◽  
Sounia DAHMANI ◽  
Zineb KASMI ◽  
Abdelhamid FOUGHALIA ◽  
Mahmoud DJEMAL

This research was conducted to study the key physicochemical parameters of samples of raw bovine and goat milk collected in the steppic region of Djelfa. One hundred and six samples of raw milk were collected from April 2018 to May 2018, at points of sale and analyzed. The results showed that cow’s milk had 3.66±0.89% fat, 11.4±1.56% solid not fat, 4.35±0.61% protein, 6.35±0.89% lactose and a density of 1.0360±0.0056 with a freezing point of -0.380±0.053 °C. While goat’s milk had 3.43±0.65% fat, 10.2±0.92% solid not fat, 3.88±0.36% protein, 5.66±0.52% lactose and a density of 1.0317±0.0035 with a freezing point of -0.348±0.044 °C. This proves that cow’s milk has a slightly higher physicochemical quality than goat’s milk. In addition, the present study showed that 100% raw goat milk is wet against 97.1% raw bovine milk. This indicates the presence of cases of fraud requiring disciplinary procedures. Moreover, in the majority of the cases, the storage temperatures of the milk far exceed the values recommended by the Algerian standards (+6°C). It is necessary to establish a program of control and popularization of all the actors of the sector in order to improve the quality and the quantity of raw milk produced.


1992 ◽  
Vol 4 (1) ◽  
pp. 11-18 ◽  
Author(s):  
C. Castro ◽  
R. Martín ◽  
T. García ◽  
E. Rodríguez ◽  
I. González ◽  
...  

2014 ◽  
Vol 83 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Lenka Ruprichová ◽  
Michaela Králová ◽  
Ivana Borkovcová ◽  
Lenka Vorlová ◽  
Iveta Bedáňová

Protein analysis is very important both in terms of milk protein allergy, and of milk and dairy product adulteration (β-lactoglobulin may be an important marker in the detection of milk adulteration). The aim of this study was to detect major whey proteins α-lactalbumin and β-lactoglobulin and their genetic variants by reversed-phase high-performance liquid chromatography. Milk samples from cows (n = 40), goats (n = 40) and sheep (n = 40) were collected at two farms and milk bars in the Czech Republic from April to June 2010. The concentration of α-lactalbumin was higher in goat’s milk (1.27 ± 0.05 g·l-1, P < 0.001) and cow’s milk (1.16 ± 0.02 g·l-1, P = 0.0037) compared to sheep’s milk (0.95 ± 0.06 g·l-1); however, concentration of α-lactalbumin in goat’s milk and cow’s milk did not differ significantly (P < 0.05). Goat’s milk contained less β-lactoglobulin (3.07 ± 0.08 g·l-1) compared to cow’s milk (4.10 ± 0.04 g·l-1, P < 0.001) or sheep’s milk (5.97 ± 0.24 g·l-1, P < 0.001). A highly significant positive correlation (r = 0.8686; P < 0.001) was found between fraction A and B of β-lactoglobulin in sheep’s milk, whereas in cow’s milk there was a negative correlation (r = -0.3010; P = 0.0296). This study summarizes actual information of the whey protein content in different types of milk which may be relevant in assessing their allergenic potential.


1968 ◽  
Vol 35 (3) ◽  
pp. 383-384 ◽  
Author(s):  
R. Aschaffenburg ◽  
Janet E. Dance

Hypersensitivity to cow's milk is not uncommon in humans, particularly babies and infants. Those afflicted may be found to tolerate goat's milk which, in this country, commands a considerably higher price than cow's milk. For economic as well as ethical reasons it is therefore desirable to ascertain that goat's milk offered for sale is free from admixtures of cow's milk. Tests should be sensitive to relatively minor admixtures, since even small additions of cow's milk may undo the benefit which hypersensitive subjects expect to derive from the consumption of goat's milk.


2014 ◽  
Vol 44 (4) ◽  
pp. 602-610 ◽  
Author(s):  
S. Hazebrouck ◽  
S. Ah-Leung ◽  
E. Bidat ◽  
E. Paty ◽  
M.-F. Drumare ◽  
...  

2007 ◽  
Vol 18 (7) ◽  
pp. 594-598 ◽  
Author(s):  
Daniela Vita ◽  
Giovanni Passalacqua ◽  
Giuseppe Di Pasquale ◽  
Lucia Caminiti ◽  
Giuseppe Crisafulli ◽  
...  

Food Control ◽  
2011 ◽  
Vol 22 (6) ◽  
pp. 883-887 ◽  
Author(s):  
Hongxin Song ◽  
Haiyan Xue ◽  
Yan Han

1983 ◽  
Vol 50 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Gunnar Rysstad ◽  
Roger K. Abrahamsen

SummaryVariations in the biochemical performance of 2 DL-type mixed strain starters CH 01 and FDn grown in a sample of skimmed goat's milk I (obtained 2–3 weeks after parturition) and of goat's milk II (8 months after parturition) were studied, and results compared with those of the cultures grown in skimmed cow's milk. The initial levels of citrate differed in the 3 milks, with goat's milk II containing 0·7 mg/ml, goat's milk I 1·4 mg/ml and cow's milk 1·8 mg/ml. The production of diacetyl, α-acetolactic acid and acetoin was very low in goat's milk II. In goat's milk I the production of these compounds was higher, but still considerably lower than in cow's milk. Production of ethanol (EtOH) was similar in the 3 milks incubated with starter CH 01, but with FDn the production of EtOH was distinctly higher in goat's milk II. The total amount of CO2produced corresponded with the initial level of citrate; consequently the highest production was found in cow's milk and the lowest in goat's milk II. The use of different starters for fermented products made from goat's milk in early and late lactation is suggested.


Sign in / Sign up

Export Citation Format

Share Document