Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit

LWT ◽  
2020 ◽  
Vol 134 ◽  
pp. 110191
Author(s):  
Xiaoyun Liu ◽  
Jiangkuo Li ◽  
Xiaomin Cui ◽  
Dongchao Ji ◽  
Yong Xu ◽  
...  
1999 ◽  
Vol 68 (3) ◽  
pp. 675-682 ◽  
Author(s):  
Yasunori Hamauzu ◽  
Yuko Ueda ◽  
Kiyoshi Banno

2012 ◽  
Vol 40 (1) ◽  
pp. 222 ◽  
Author(s):  
Otakar ROP ◽  
Martin POSOLDA ◽  
Jiri MLCEK ◽  
Vojtech REZNICEK ◽  
Jiri SOCHOR ◽  
...  

During the last century due to the changes in landscape management, in country people’s lives and with intensive fruit-growing the native cultivars of apple fruit trees have been gradually disappearing. The aim of the study was to compare the juices made of native apple cider cultivars. The cultivars-‘Boikovo’, ‘Jadernicka moravska’, ‘Kardinal zihany’, ‘Panenske ceske’, ‘Parmena zlata zimni’, ‘Strymka’ growing in the locality of the Litencicke Hills in the eastern part of the Czech Republic were selected. For comparison, the fruits of commercial ‘Idared’ cultivar were also included. The chemical composition, antioxidant capacity, phenols, flavonoids and ascorbic acid content and the influence of juices on scavenging activity of nitric oxide and hydroxyl radical were measured. The mutual ratio of examined properties which were found, provide information about qualities and possibilities of use of native cultivars. High antioxidant properties characterize the juice of native apple cultivars. In particular, the ‘Strymka’ cultivar contained 2,637.34 mg of AAE (ascorbic acid equivalent) per litre in case of antioxidant capacity. In the juice of this cultivar the value of 144.05 mg of ascorbic acid per litre was recorded. As regards the ‘Panenske ceske’ cultivar, antioxidant capacity was 2,548.38 mg of AAE l-1 and in relation to ascorbic acid, the value was 145.35 mg l-1. Similarly, high values were observed in both cultivars concerning the scavenging effect of apple juices on hydroxyl radical and nitric oxide (the ‘Strymka’ cultivar 16.38% and 19.26%, the ‘Panenske ceske’ cultivar 16.31% and 18.60%).


1998 ◽  
Vol 88 (4) ◽  
pp. 282-291 ◽  
Author(s):  
Ahmed El-Ghaouth ◽  
Charles L. Wilson ◽  
Michael Wisniewski

Biocontrol activity of Candida saitoana and its interaction with Botrytis cinerea in apple wounds were investigated. When cultured together, yeast attached to Botrytis sp. hyphal walls. In wounded apple tissue, C. saitoana restricted the proliferation of B. cinerea, multiplied, and suppressed disease caused by either B. cinerea or Penicillium expansum. In inoculated apple tissue without the yeast, fungal colonization caused an extensive degradation of host walls and altered cellulose labeling patterns. Hyphae in close proximity to the antagonistic yeast exhibited severe cytological injury, such as cell wall swelling and protoplasm degeneration. Colonization of the wound site by C. saitoana did not cause degradation of host cell walls. Host cell walls in close contact with C. saitoana cells and B. cinerea hyphae were well preserved and displayed an intense and regular cellulose labeling pattern. In addition to restricting fungal colonization, C. saitoana induced the formation of structural defense responses in apple tissue. The ability of C. saitoana to prevent the necrotrophic growth of the pathogen and stimulate structural defense responses may be the basis of its biocontrol activity.


2003 ◽  
Vol 93 (3) ◽  
pp. 344-348 ◽  
Author(s):  
Ahmed El Ghaouth ◽  
Charles L. Wilson ◽  
Michael Wisniewski

The ability of Candida saitoana to induce systemic resistance in apple fruit against Botrytis cinerea was investigated. To separate the antagonistic activity of C. saitoana from its ability to induce resistance, the antagonist and the pathogen were applied in spatially separated wounds. In fresh apples, C. saitoana applied 0 or 24 h before inoculation with B. cinerea showed no effect on lesion development caused by B. cinerea. When applied 48 to 72 h preinoculation with B. cinerea, however, C. saitoana reduced lesion diameter by more than 50 and 70%, respectively, compared with wounding. C. saitoana had no effect on lesion development on stored apples, regardless of the lag period between yeast treatment and inoculation with B. cinerea. In addition to inducing systemic resistance, C. saitoana increased chitinase and β-1,3-glucanase activities with a higher accumulation in fresh than in stored apples. In fresh apples, the onset of systemic resistance to B. cinerea coincided with the increase in chitinase and β-1,3-glucanase activity in systemically protected tissue. These studies show that C. saitoana is capable of inducing systemic resistance in apple fruit and indirectly suggest that antifungal hydrolases are involved in the observed systemic protection.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1067D-1067
Author(s):  
Todd C. Einhorn ◽  
Cecil Stushnoff ◽  
Ann E. McSay ◽  
Phil L. Forsline ◽  
Sam Cox ◽  
...  

Phlorizin is known for its role in reducing glucotoxicity and has a long history of use in diabetes research. In addition, its contribution to the pool of total phenolics adds to the overall health benefits attributed to fruit. Phlorizin is limited to Rosaceae family plants, of which apple comprises its current commercial source; however, limited information exists regarding its biodiversity among apple taxa. A subset of 22 taxa from a core collection of apple accessions representative of the global genetic diversity of apple was used to investigate the biodiversity of phlorizin present in apple shoots and in fruit relative to total phenolic content and free radical scavenging capacity. Fruit and shoots were harvested from the USDA Plant Genetic Resources Unit in Geneva, N.Y. Validation and quantification of phlorizin was conducted using a rigorous high-pressure liquid chromatography (HPLC) procedure. Total phenolics in fruit, assayed using a Folin-Ciocalteu method and expressed as gallic acid equivalents, ranged from 227 to 7181 mg·L-1 and were strongly related to 2,2' azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant capacity for the core collection (r= 0.778). On a molar basis, phlorizin had lower antioxidant capacity than other major phenolic compounds present in apple fruit, but was more effective than ascorbic acid. Phlorizin yield in dormant apple shoots, expressed as percent weight, ranged from 0.9% to 5.5%. A rapid, 96 well micro-plate spectrophotometric assay was also developed to aid in the screening of multiple samples for selection of high phlorizin yielding apple taxa. Spectrophotometry overestimated phlorizin content as expected, but the calibration curve between HPLC and spectrophotometry was acceptable, r2 = 0.88.


2020 ◽  
Vol 169 ◽  
pp. 111297
Author(s):  
Xiaoyun Liu ◽  
Dongchao Ji ◽  
Xiaomin Cui ◽  
Zhanquan Zhang ◽  
Boqiang Li ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 471-480 ◽  
Author(s):  
El Faïza Abouraïcha ◽  
Zainab El Alaoui-Talibi ◽  
Ahmed Tadlaoui-Ouafi ◽  
Redouan El Boutachfaiti ◽  
Emmanuel Petit ◽  
...  

2020 ◽  
Vol 62 (2) ◽  
pp. 221-229 ◽  
Author(s):  
José A. Yuri ◽  
Amalia Neira ◽  
Mauricio Fuentes ◽  
Iván Razmilic ◽  
Valeria Lepe ◽  
...  

2011 ◽  
Vol 101 (11) ◽  
pp. 1311-1321 ◽  
Author(s):  
Aya Akagi ◽  
Abhaya M. Dandekar ◽  
Henrik U. Stotz

The plant hormone ethylene regulates fruit ripening, other developmental processes, and a subset of defense responses. Here, we show that 1-aminocyclopropane-1-carboxylic acid synthase (ACS)-silenced apple (Malus domestica) fruit that express a sense construct of ACS were more susceptible to Botrytis cinerea than untransformed apple, demonstrating that ethylene strengthens fruit resistance to B. cinerea infection. Because ethylene response factors (ERFs) are known to contribute to resistance against B. cinerea via the ethylene-signaling pathway, we cloned four ERF cDNAs from fruit of M. domestica: MdERF3, -4, -5, and -6. Expression of all four MdERF mRNAs was ethylene dependent and induced by wounding or by B. cinerea infection. B. cinerea infection suppressed rapid induction of wound-related MdERF expression. MdERF3 was the only mRNA induced by wounding and B. cinerea infection in ACS-suppressed apple fruit, although its induction was reduced compared with wild-type apple. Promoter regions of all four MdERF genes were cloned and putative cis-elements were identified in each promoter. Transient expression of MdERF3 in tobacco increased expression of the GCC-box containing gene chitinase 48.


Sign in / Sign up

Export Citation Format

Share Document