scholarly journals Control Of Postharvest Decay Of Apple Fruit With Trichoderma Virens Isolates And Induction Of Defense Responses

Author(s):  
Fatemeh Bordbar ◽  
Hassan Etebarian ◽  
Navazollah Sahebani ◽  
Hamid Rohani
2000 ◽  
Vol 19 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Antonio Ippolito ◽  
Ahmed El Ghaouth ◽  
Charles L. Wilson ◽  
Michael Wisniewski

2022 ◽  
Vol 12 ◽  
Author(s):  
Hongbo Yuan ◽  
Bingke Shi ◽  
Li Wang ◽  
Tianxiang Huang ◽  
Zengqiang Zhou ◽  
...  

Botryosphaeria dothidea causes apple ring rot, which is among the most prevalent postharvest diseases of apples and causes significant economic loss during storage. In this study, we investigated the biocontrol activity and possible mechanism of Bacillus velezensis strain P2-1 isolated from apple branches against B. dothidea in postharvest apple fruit. The results showed strain P2-1, one of the 80 different endophytic bacterial strains from apple branches, exhibited strong inhibitory effects against B. dothidea growth and resulted in hyphal deformity. B. velezensis P2-1 treatment significantly reduced the ring rot caused by B. dothidea. Additionally, the supernatant of strain P2-1 exhibited antifungal activity against B. dothidea. Re-isolation assay indicated the capability of strain P2-1 to colonize and survive in apple fruit. PCR and qRT-PCR assays revealed that strain P2-1 harbored the gene clusters required for biosynthesis of antifungal lipopeptides and polyketides. Strain P2-1 treatment significantly enhanced the expression levels of pathogenesis-related genes (MdPR1 and MdPR5) but did not significantly affect apple fruit qualities (measured in fruit firmness, titratable acid, ascorbic acid, and soluble sugar). Thus, our results suggest that B. velezensis strain P2-1 is a biocontrol agent against B. dothidea-induced apple postharvest decay. It acts partially by inhibiting mycelial growth of B. dothidea, secreting antifungal substances, and inducing apple defense responses.


2006 ◽  
Vol 19 (8) ◽  
pp. 838-853 ◽  
Author(s):  
Slavica Djonović ◽  
Maria J. Pozo ◽  
Lawrence J. Dangott ◽  
Charles R. Howell ◽  
Charles M. Kenerley

The soilborne filamentous fungus Trichoderma virens is a biocontrol agent with a well-known ability to produce antibiotics, parasitize pathogenic fungi, and induce systemic resistance in plants. Even though a plant-mediated response has been confirmed as a component of bioprotection by Trichoderma spp., the molecular mechanisms involved remain largely unknown. Here, we report the identification, purification, and characterization of an elicitor secreted by T. virens, a small protein designated Sm1 (small protein 1). Sm1 lacks toxic activity against plants and microbes. Instead, native, purified Sm1 triggers production of reactive oxygen species in monocot and dicot seedlings, rice, and cotton, and induces the expression of defense-related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development under different nutrient conditions and in the presence of a host plant. Using an axenic hydroponic system, we show that SM1 expression and secretion of the protein is significantly higher in the presence of the plant. Pretreatment of cotton cotyledons with Sm1 provided high levels of protection to the foliar pathogen Colletotrichum sp. These results indicate that Sm1 is involved in the induction of resistance by Trichoderma spp. through the activation of plant defense mechanisms.


1998 ◽  
Vol 88 (4) ◽  
pp. 282-291 ◽  
Author(s):  
Ahmed El-Ghaouth ◽  
Charles L. Wilson ◽  
Michael Wisniewski

Biocontrol activity of Candida saitoana and its interaction with Botrytis cinerea in apple wounds were investigated. When cultured together, yeast attached to Botrytis sp. hyphal walls. In wounded apple tissue, C. saitoana restricted the proliferation of B. cinerea, multiplied, and suppressed disease caused by either B. cinerea or Penicillium expansum. In inoculated apple tissue without the yeast, fungal colonization caused an extensive degradation of host walls and altered cellulose labeling patterns. Hyphae in close proximity to the antagonistic yeast exhibited severe cytological injury, such as cell wall swelling and protoplasm degeneration. Colonization of the wound site by C. saitoana did not cause degradation of host cell walls. Host cell walls in close contact with C. saitoana cells and B. cinerea hyphae were well preserved and displayed an intense and regular cellulose labeling pattern. In addition to restricting fungal colonization, C. saitoana induced the formation of structural defense responses in apple tissue. The ability of C. saitoana to prevent the necrotrophic growth of the pathogen and stimulate structural defense responses may be the basis of its biocontrol activity.


LWT ◽  
2020 ◽  
Vol 134 ◽  
pp. 110191
Author(s):  
Xiaoyun Liu ◽  
Jiangkuo Li ◽  
Xiaomin Cui ◽  
Dongchao Ji ◽  
Yong Xu ◽  
...  

2003 ◽  
Vol 93 (3) ◽  
pp. 344-348 ◽  
Author(s):  
Ahmed El Ghaouth ◽  
Charles L. Wilson ◽  
Michael Wisniewski

The ability of Candida saitoana to induce systemic resistance in apple fruit against Botrytis cinerea was investigated. To separate the antagonistic activity of C. saitoana from its ability to induce resistance, the antagonist and the pathogen were applied in spatially separated wounds. In fresh apples, C. saitoana applied 0 or 24 h before inoculation with B. cinerea showed no effect on lesion development caused by B. cinerea. When applied 48 to 72 h preinoculation with B. cinerea, however, C. saitoana reduced lesion diameter by more than 50 and 70%, respectively, compared with wounding. C. saitoana had no effect on lesion development on stored apples, regardless of the lag period between yeast treatment and inoculation with B. cinerea. In addition to inducing systemic resistance, C. saitoana increased chitinase and β-1,3-glucanase activities with a higher accumulation in fresh than in stored apples. In fresh apples, the onset of systemic resistance to B. cinerea coincided with the increase in chitinase and β-1,3-glucanase activity in systemically protected tissue. These studies show that C. saitoana is capable of inducing systemic resistance in apple fruit and indirectly suggest that antifungal hydrolases are involved in the observed systemic protection.


2008 ◽  
Vol 8 (6) ◽  
pp. 961-963 ◽  
Author(s):  
Stefano Fiori ◽  
Angela Fadda ◽  
Sara Giobbe ◽  
Enrico Berardi ◽  
Quirico Migheli

2005 ◽  
Vol 36 (3) ◽  
pp. 235-244 ◽  
Author(s):  
William S. Conway ◽  
Britta Leverentz ◽  
Wojciech J. Janisiewicz ◽  
Robert A. Saftner ◽  
Mary J. Camp

Sign in / Sign up

Export Citation Format

Share Document