Comparison of bovine milk fat globule membrane protein retention by different ultrafiltration membranes using a label-free proteomic approach

LWT ◽  
2021 ◽  
pp. 111219
Author(s):  
Mengqi Wang ◽  
Chunjie Cao ◽  
Yi Wang ◽  
Hongbo Li ◽  
Hongjuan Li ◽  
...  
2018 ◽  
Vol 113 ◽  
pp. 1-8 ◽  
Author(s):  
Yongxin Yang ◽  
Nan Zheng ◽  
Xiaowei Zhao ◽  
Jinhui Yang ◽  
Yangdong Zhang ◽  
...  

1994 ◽  
Vol 1199 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Naohito Aoki ◽  
Hidenori Kuroda ◽  
Miho Urabe ◽  
Yoshimi Taniguchi ◽  
Takahiro Adachi ◽  
...  

2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


DNA Sequence ◽  
2004 ◽  
Vol 15 (5-6) ◽  
pp. 326-331 ◽  
Author(s):  
T.K. Bhattacharya ◽  
S.S. Misra ◽  
Feroz D. Sheikh ◽  
S. Dayal ◽  
V. Vohra ◽  
...  

2014 ◽  
Vol 8 ◽  
pp. CMPed.S16962 ◽  
Author(s):  
Claude Billeaud ◽  
Giuseppe Puccio ◽  
Elie Saliba ◽  
Bernard Guillois ◽  
Carole Vaysse ◽  
...  

Objective This multicenter non-inferiority study evaluated the safety of infant formulas enriched with bovine milk fat globule membrane (MFGM) fractions. Methods Healthy, full-term infants ( n = 119) age ≤14 days were randomized to standard infant formula (control), standard formula enriched with a lipid-rich MFGM fraction (MFGM-L), or standard formula enriched with a protein-rich MFGM fraction (MFGM-P). Primary outcome was mean weight gain per day from enrollment to age 4 months (non-inferiority margin: –3.0 g/day). Secondary (length, head circumference, tolerability, morbidity, adverse events) and exploratory (phospholipids, metabolic markers, immune markers) outcomes were also evaluated. Results Weight gain was non-inferior in the MFGM-L and MFGM-P groups compared with the control group. Among secondary and exploratory outcomes, few between-group differences were observed. Formula tolerance rates were high (>94%) in all groups. Adverse event and morbidity rates were similar across groups except for a higher rate of eczema in the MFGM-P group (13.9% vs control [3.5%], MFGM-L [1.4%]). Conclusion Both MFGM-enriched formulas met the primary safety endpoint of non-inferiority in weight gain and were generally well tolerated, although a higher rate of eczema was observed in the MFGM-P group.


Sign in / Sign up

Export Citation Format

Share Document