scholarly journals High resolution micromill sampling for analysis of fish otoliths by ICP-MS: Effects of sampling and specimen preparation on trace element fingerprints

2008 ◽  
Vol 66 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Zikri Arslan ◽  
David H. Secor
Talanta ◽  
2021 ◽  
pp. 122446
Author(s):  
Claire Charles ◽  
Jean-Alix Barrat ◽  
Ewan Pelleter

2015 ◽  
Vol 409 ◽  
pp. 157-168 ◽  
Author(s):  
Teresa Ubide ◽  
Cora A. McKenna ◽  
David M. Chew ◽  
Balz S. Kamber

Author(s):  
William Krakow ◽  
David A. Smith

Recent developments in specimen preparation, imaging and image analysis together permit the experimental determination of the atomic structure of certain, simple grain boundaries in metals such as gold. Single crystal, ∼125Å thick, (110) oriented gold films are vapor deposited onto ∼3000Å of epitaxial silver on (110) oriented cut and polished rock salt substrates. Bicrystal gold films are then made by first removing the silver coated substrate and placing in contact two suitably misoriented pieces of the gold film on a gold grid. Controlled heating in a hot stage first produces twist boundaries which then migrate, so reducing the grain boundary area, to give mixed boundaries and finally tilt boundaries perpendicular to the foil. These specimens are well suited to investigation by high resolution transmission electron microscopy.


Author(s):  
K. Ogura ◽  
T. Suzuki ◽  
C. Nielsen

In spite of the complicated specimen preparation, Transmission Electron Microscopes (TEM) have traditionally been used for the investigation of the fine grain structures of sintered ceramics. Scanning Electron Microscopes (SEM) have not been used much for the same purpose as TEM because of poor results caused by the specimen charging effect, and also the lack of sufficient resolution. Here, we are presenting a successful result of high resolution imaging of sintered alumina (pure Al2O3) using the Specimen Heated and Electron Beam Induced Conductivity (SHEBIC) method, which we recently reported, in an ultrahigh resolution SEM (UHR-SEM). The JSM-6000F, equipped with a Field Emission Gun (FEG) and an in-lens specimen position, was used for this application.After sintered Al2O3 was sliced into a piece approximately 0.5 mm in thickness, one side was mechanically polished to get a shiny plane for the observation. When the observation was started at 20 kV, an enormous charging effect occured, and it was impossible to obtain a clear Secondary Electron (SE) image (Fig.1).


2017 ◽  
Author(s):  
Amy K. Plechacek ◽  
◽  
Madeline E. Schreiber ◽  
John A. Chermak ◽  
Tracy L. Bank

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hansol Lee ◽  
Myung Jun Lee ◽  
Eun-Joo Kim ◽  
Gi Yeong Huh ◽  
Jae-Hyeok Lee ◽  
...  

AbstractAbnormal iron accumulation around the substantia nigra (SN) is a diagnostic indicator of Parkinsonism. This study aimed to identify iron-related microarchitectural changes around the SN of brains with progressive supranuclear palsy (PSP) via postmortem validations and in vivo magnetic resonance imaging (MRI). 7 T high-resolution MRI was applied to two postmortem brain tissues, from one normal brain and one PSP brain. Histopathological examinations were performed to demonstrate the molecular origin of the high-resolution postmortem MRI findings, by using ferric iron staining, myelin staining, and two-dimensional laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging. In vivo iron-related MRI was performed on five healthy controls, five patients with Parkinson’s disease (PD), and five patients with PSP. In the postmortem examination, excessive iron deposition along the myelinated fiber at the anterior SN and third cranial nerve (oculomotor nerve) fascicles of the PSP brain was verified by LA-ICP-MS. This region corresponded to those with high R2* values and positive susceptibility from quantitative susceptibility mapping (QSM), but was less sensitive in Perls’ Prussian blue staining. In in vivo susceptibility-weighted imaging, hypointense pixels were observed in the region between the SN and red nucleus (RN) in patients with PSP, but not in healthy controls and patients with PD. R2* and QSM values of such region were significantly higher in patients with PSP compared to those in healthy controls and patients with PD as well (vs. healthy control: p = 0.008; vs. PD: p = 0.008). Thus, excessive iron accumulation along the myelinated fibers at the anterior SN and oculomotor nerve fascicles may be a pathological characteristic and crucial MR biomarker in a brain with PSP.


Lithos ◽  
2021 ◽  
Vol 386-387 ◽  
pp. 106001
Author(s):  
Miguel Ángel Galliski ◽  
Albrecht von Quadt ◽  
María Florencia Márquez-Zavalía

Sign in / Sign up

Export Citation Format

Share Document