scholarly journals Physiological responses and scope for growth in a marine scavenging gastropod, Nassarius festivus (Powys, 1835), are affected by salinity and temperature but not by ocean acidification

2015 ◽  
Vol 73 (3) ◽  
pp. 814-824 ◽  
Author(s):  
Haoyu Zhang ◽  
Paul K. S. Shin ◽  
Siu Gin Cheung

Abstract In the past few years, there has been a dramatic increase in the number of studies revealing negative or positive effects of ocean acidification on marine organisms including corals, echinoderms, copepods, molluscs, and fish. However, scavenging gastropods have received little attention despite being major players in energy flow, removing carrion, and recycling materials in marine benthic communities. The present study investigated the physiological responses (ingestion, absorption rate and efficiency, respiration, and excretion) and scope for growth (SfG) of an intertidal scavenging gastropod, Nassarius festivus, to the combined effects of ocean acidification (pCO2 levels: 380, 950, and 1250 µatm), salinity (10 and 30 psu), and temperature (15 and 30°C) for 31 d. Low salinity (10 psu) reduced ingestion, absorption rate, respiration, excretion, and SfG of N. festivus throughout the exposure period. Low temperature (15°C) had a similar effect on these parameters, except for SfG at the end of the exposure period (31 d). However, elevated pCO2 levels had no effects in isolation on all physiological parameters and only weak interactions with temperature and/or salinity for excretion and SfG. In conclusion, elevated pCO2 will not affect the energy budget of adult N. festivus at the pCO2 level predicted to occur by the Intergovernmental Panel on Climate Change (IPCC) in the year 2300.

2018 ◽  
Vol 75 (6) ◽  
pp. 2117-2128 ◽  
Author(s):  
Samuel P S Rastrick ◽  
Victoria Collier ◽  
Helen Graham ◽  
Tore Strohmeier ◽  
Nia M Whiteley ◽  
...  

Abstract Climate change driven alterations in salinity and carbonate chemistry are predicted to have significant implications particularly for northern costal organisms, including the economically important filter feeders Mytilus edulis and Ciona intestinalis. However, despite a growing number of studies investigating the biological effects of multiple environmental stressors, the combined effects of elevated pCO2 and reduced salinity remain comparatively understudied. Changes in metabolic costs associated with homeostasis and feeding/digestion in response to environmental stressors may reallocate energy from growth and reproduction, affecting performance. Although these energetic trade-offs in response to changes in routine metabolic rates have been well demonstrated fewer studies have investigated how these are affected by changes in feeding plasticity. Consequently, the present study investigated the combined effects of 26 days’ exposure to elevated pCO2 (500 µatm and 1000 µatm) and reduced salinity (30, 23, and 16) on the energy available for growth and performance (Scope for Growth) in M. edulis and C. intestinalis, and the role of metabolic rate (oxygen uptake) and feeding plasticity [clearance rate (CR) and absorption efficiency] in this process. In M. edulis exposure to elevated pCO2 resulted in a 50% reduction in Scope for Growth. However, elevated pCO2 had a much greater effect on C. intestinalis, with more than a 70% reduction in Scope for Growth. In M. edulis negative responses to elevated pCO2 are also unlikely be further affected by changes in salinity between 16 and 30. Whereas, under future predicted levels of pCO2C. intestinalis showed 100% mortality at a salinity of 16, and a >90% decrease in Scope for Growth with reduced biomass at a salinity of 23. Importantly, this work demonstrates energy available for production is more dependent on feeding plasticity, i.e. the ability to regulate CR and absorption efficiency, in response to multiple stressors than on more commonly studied changes in metabolic rates.


2013 ◽  
Vol 10 (7) ◽  
pp. 4897-4909 ◽  
Author(s):  
K. R. N. Anthony ◽  
G. Diaz-Pulido ◽  
N. Verlinden ◽  
B. Tilbrook ◽  
A. J. Andersson

Abstract. Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state (Ωa). Results of flume studies using intact reef habitats (1.2 m by 0.4 m), showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm), macroalgae (Chnoospora implexa), turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm) and high flow (35 compared to 8 cm s−1). In contrast, branching corals (Acropora aspera) increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm) during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Ωa by day (by around 0.13 h−1), but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou ◽  
Panos Grigoriou

The increased absorption of atmospheric CO2 by the ocean reduces pH and affects the carbonate chemistry of seawater, thus interfering with the shell formation processes of marine calcifiers. The present study aims to examine the effects of ocean acidification and warming on the shell morphological properties of two intertidal gastropod species, Nassarius nitidus and Columbella rustica. The experimental treatments lasted for 3 months and combined a temperature increase of 3°C and a pH reduction of 0.3 units. The selected treatments reflected the high emissions (RCP 8.5) “business as usual” scenario of the Intergovernmental Panel on Climate Change models for eastern Mediterranean. The morphological and architectural properties of the shell, such as density, thickness and porosity were examined using 3D micro-computed tomography, which is a technique giving the advantage of calculating values for the total shell (not only at specific points) and at the same time leaving the shells intact. Nassarius nitidus had a lower shell density and thickness and a higher porosity when the pH was reduced at ambient temperature, but the combination of reduced pH and increased temperature did not have a noticeable effect in comparison to the control. The shell of Columbella rustica was less dense, thinner and more porous under acidic and warm conditions, but when the temperature was increased under ambient pH the shells were thicker and denser than the control. Under low pH and ambient temperature, shells showed no differences compared to the control. The vulnerability of calcareous shells to ocean acidification and warming appears to be variable among species. Plasticity of shell building organisms as an acclimation action toward a continuously changing marine environment needs to be further investigated focusing on species or shell region specific adaptation mechanisms.


2011 ◽  
Vol 8 (4) ◽  
pp. 8485-8513 ◽  
Author(s):  
M. Holcomb ◽  
A. L. Cohen ◽  
D. C. McCorkle

Abstract. The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. No nutrient effect was observed. At 16 °C, gamete release was not observed, and no gender differences in calcification rate were observed. However, corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns. Female corals grown at 24 °C and exposed to CO2 had calcification rates 39 % lower than females grown at ambient CO2, while males showed only a 5 % decline in calcification under elevated CO2. At 16 °C, female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15 % and 19 % respectively). At 24 °C, corals spawned repeatedly, while no spawning was observed at 16 °C. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification and their inclusion in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.


2011 ◽  
Vol 3 (1/2) ◽  
pp. 163 ◽  
Author(s):  
A. Shanableh ◽  
T. Merabtene ◽  
M. Omar ◽  
M. Imteaz

2018 ◽  
Vol 219 (3) ◽  
pp. 1005-1017 ◽  
Author(s):  
Catherine J. Collier ◽  
Lucas Langlois ◽  
Yan Ow ◽  
Charlotte Johansson ◽  
Manuela Giammusso ◽  
...  

2019 ◽  
Vol 9 ◽  
Author(s):  
Lei Jiang ◽  
Ya-Juan Guo ◽  
Fang Zhang ◽  
Yu-Yang Zhang ◽  
Laurence John McCook ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
J. Meyer ◽  
U. Riebesell

Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.


Sign in / Sign up

Export Citation Format

Share Document