Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light

2021 ◽  
Vol 166 ◽  
pp. 105276
Author(s):  
Hongjin Qiao ◽  
Shasha Zang ◽  
Fang Yan ◽  
Zhiguang Xu ◽  
Lei Wang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clarisse Uwizeye ◽  
Johan Decelle ◽  
Pierre-Henri Jouneau ◽  
Serena Flori ◽  
Benoit Gallet ◽  
...  

AbstractEukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.


2014 ◽  
Vol 289 (44) ◽  
pp. 30387-30403 ◽  
Author(s):  
Lee Recht ◽  
Nadine Töpfer ◽  
Albert Batushansky ◽  
Noga Sikron ◽  
Yves Gibon ◽  
...  

The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments.


2015 ◽  
Vol 12 (3) ◽  
pp. 637-651 ◽  
Author(s):  
N. Meskhidze ◽  
A. Sabolis ◽  
R. Reed ◽  
D. Kamykowski

Abstract. We report here production rates of isoprene and monoterpene compounds (α-pinene, β-pinene, camphene and d-limonene) from six phytoplankton monocultures as a function of irradiance and temperature. Irradiance experiments were carried out for diatom strains (Thalassiosira weissflogii and Thalassiosira pseudonana), prymnesiophyte strains (Pleurochrysis carterae), dinoflagellate strains (Karenia brevis and Prorocentrum minimum), and cryptophyte strains (Rhodomonas salina), while temperature experiments were carried out for diatom strains (Thalassiosira weissflogii and Thalassiosira pseudonana). Phytoplankton species, incubated in a climate-controlled room, were subject to variable light (90 to 900 μmol m−2 s−1) and temperature (18 to 30 °C) regimes. Compared to isoprene, monoterpene emissions were an order of magnitude lower at all light and temperature levels. Emission rates are normalized by cell count and Chlorophyll a (Chl a) content. Diatom strains were the largest emitters, with ~ 2 × 10−17 g(cell)−1h−1 (~ 35 μg (g Chl a)−1 h−1) for isoprene and ~ 5 × 10−19 g (cell)−1 h−1 (~ 1 μg (g Chl a)−1) h−1) for α-pinene. The contribution to the total monoterpene production was ~ 70% from α-pinene, ~ 20% for d-limonene, and < 10% for camphene and β-pinene. Phytoplankton species showed a rapid increase in production rates at low irradiance (< 150 μmol m−2 s−1) and a gradual increase at high (> 250 μmol m−2 s−1) irradiance. Measurements revealed different patterns for time-averaged emissions rates over two successive days. On the first day, most of the species showed a distinct increase in production rates within the first 4 h while, on the second day, the emission rates were overall higher, but less variable. The data suggest that enhanced amounts of isoprene and monoterpenes are emitted from phytoplankton as a result of perturbations in environmental conditions that cause imbalance in chloroplasts and force primary producers to acclimate physiologically. This relationship could be a valuable tool for development of dynamic ecosystem modeling approaches for global marine isoprene and monoterpene emissions based on phytoplankton physiological responses to a changing environment.


2002 ◽  
Vol 38 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Mirash Zhekisheva ◽  
Sammy Boussiba ◽  
Inna Khozin‐Goldberg ◽  
Aliza Zarka ◽  
Zvi Cohen

2011 ◽  
Vol 10 (10) ◽  
pp. 1577-1585 ◽  
Author(s):  
Xiao-li WANG ◽  
Yu-hua SHAN ◽  
Su-hua WANG ◽  
Yan DU ◽  
Ke FENG

2014 ◽  
Vol 11 (9) ◽  
pp. 13533-13570 ◽  
Author(s):  
N. Meskhidze ◽  
A. Sabolis ◽  
R. Reed ◽  
D. Kamykowski

Abstract. We report here production rates of isoprene and monoterpene compounds (α-pinene, β-pinene, camphene and d-limonene) from six phytoplankton monocultures as a function of irradiance and temperature. Irradiance experiments were carried out for diatom strains – Thalassiosira weissflogii and Thalassiosira pseudonana; prymnesiophyte strains – Pleurochrysis carterae; dinoflagellate strains – Karenia brevis and Prorocentrum minimum; cryptophyte strains – Rhodomonas salina, while temperature experiments were carried out for diatom strains – Thalassiosira weissflogii and Thalassiosira pseudonana. Phytoplankton species, incubated in a climate-controlled room, were subject to variable light (90 to 900 μmol m−2s−1) and temperature (18 to 30 °C) regimes. Compared to isoprene, monoterpene emissions were an order of magnitude lower at all light and temperature levels. Emission rates are normalized by cell count and Chlorophyll a (Chl a) content. Diatom strains were the largest emitters, with ~2x1017g (cell)−1h−1 (~35 μg (g Chl a)−1h−1) for isoprene and ~5x10−19 g (cell)−1h−1 (~1μg (g Chl a)−1) h−1) for α-pinene. The contribution to the total monoterpene production was ~70% from α-pinene, ~20% for d-limonene, and <10% for camphene and β -pinene. Phytoplankton species showed a rapid increase in production rates at low (<150 μmol m−2s−1) and a gradual increase at high (>250 μmol m−2s−1) irradiance. Measurements revealed different patterns for time-averaged emissions rates over two successive days. On the first day most of the species showed distinct increase in production rates within the first four hours, while on the second day the emission rates were overall higher, but less variable. The data suggest that enhanced amounts of isoprene and monoterpenes are emitted from phytoplankton as a result of perturbations in environmental conditions that cause disbalance in chloroplasts and forces primary producers to acclimate physiologically. This relationship could be a valuable tool for development of dynamic ecosystem modeling approaches for global marine isoprene and monoterpene emissions based on phytoplankton physiological responses to a changing environment.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Hong-Po Dong ◽  
Yue-Lei Dong ◽  
Lei Cui ◽  
Srinivasan Balamurugan ◽  
Jian Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document