3D Seismic examples of differential compaction in mass-transport deposits and their effect on post-failure strata

2010 ◽  
Vol 271 (3-4) ◽  
pp. 212-224 ◽  
Author(s):  
Tiago M. Alves
2018 ◽  
Vol 477 (1) ◽  
pp. 537-548 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke

AbstractHigh-resolution seismic data are powerful tools that can help the offshore industries to better understand the nature of the shallow subsurface and plan the development of vulnerable infrastructure. Submarine mass movements and shallow gas are among the most significant geohazards in petroleum prospecting areas. A variety of high-resolution geophysical datasets collected in the Barents Sea have significantly improved our knowledge of the shallow subsurface in recent decades. Here we use a c. 200 km2 high-resolution P-Cable 3D seismic cube from the Hoop area, SW Barents Sea, to study a 20–65 m thick glacial package between the seabed and the Upper Regional Unconformity (URU) horizons. Intra-glacial reflections, not visible in conventional seismic reflection data, are well imaged. These reflections have been mapped in detail to better understand the glacial deposits and to assess their impact on seabed installations. A shear margin moraine, mass transport deposits and thin soft beds are examples of distinct units only resolvable in the P-Cable 3D seismic data. The top of the shear margin moraine is characterized by a positive amplitude reflection incised by glacial ploughmarks. Sedimentary slide wedges and shear bands are characteristic sedimentary features of the moraine. A soft reflection locally draping the URU is interpreted as a coarser grained turbidite bed related to slope failure along the moraine. The bed is possibly filled with gas. Alternatively, this negative amplitude reflection represents a thin, soft bed above the URU. This study shows that P-Cable 3D data can be used successfully to identify and map the external and internal structures of ice stream shear margin moraines and that this knowledge is useful for site-survey investigations.


2020 ◽  
Vol 500 (1) ◽  
pp. 515-530 ◽  
Author(s):  
Jefferson Nwoko ◽  
Ian Kane ◽  
Mads Huuse

AbstractMegaclasts transported within submarine landslides can erode the substrate, influence the flow that transports them and, if they form seafloor topography, can influence subsequent flows and their deposits. We document grooves up to 40 km long formed by megaclasts carried in submarine landslides that scoured tens of metres deep into the contemporaneous substrate of the deep-water Taranaki Basin, New Zealand. A 1925 km2 3D seismic reflection survey records six mass transport deposits (MTDs) interbedded with turbidites. Here, we focus on three MTDs, labelled A (oldest), B and C (youngest). MTD-A features megaclasts that internally have coherent parallel strata, and formed striations 4–15 km long and 2–3 km wide, with protruding megaclasts that are onlapped by younger sediments. The seafloor expression of these megaclasts partially obstructed the submarine landslide that created MTD-B. MTD-B contains megaclasts that incised through the rugose topography of the underlying MTD-A, and formed divergent grooves on the basal surface of MTD-B (8–40 km long and 200–250 m wide), which suggest radial flow expansion where flows exited topographic confinement. MTD-C features grooves 2–6 km long and 100–200 m wide that terminate at megaclasts and which internally are characterized of highly deformed reflectors surrounded by a chaotic matrix. This study directly links megaclasts to the grooves they form, and demonstrates that markedly different styles of scouring and resultant grooves can occur in closely related MTDs.


Author(s):  
Barbara Claussmann ◽  
Julien Bailleul ◽  
Frank Chanier ◽  
Geoffroy Mahieux ◽  
Vincent Caron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document