Pleistocene climatic history reflected in planktonic foraminifera from ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean

2004 ◽  
Vol 51 (3-4) ◽  
pp. 213-238 ◽  
Author(s):  
Hilary Clement Olson ◽  
Christopher W Smart
2002 ◽  
Vol 21 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Christopher W. Smart

Abstract. Planktonic foraminiferal faunas have been studied from the Pleistocene of ODP Site 1073 (Leg 174A), New Jersey margin, NW Atlantic Ocean and their abundances have been compared in the >63 μm and >150 μm size-fractions from the same samples. Trends in the relative abundance of many species are similar in the two size-fractions, although the general level varies considerably. The mean abundance and ranges of Neogloboquadrina pachyderma (sinistral), N. pachyderma (dextral), Globorotalia inflata and Globigerina bulloides are greater in the >150 μm size-fraction compared with the >63 μm size-fraction. Turborotalita quinqueloba, Globigerinita uvula, G. glutinata, G. clarkei, and juvenile species are more abundant in the >63 μm size-fraction than the >150 μm size-fraction. Peaks (c. 60%) in abundance of G. uvula occur in the >63 μm size-fraction only, although the causes of these patterns are unclear. The data suggest that, in general, consistent palaeoclimatic/palaeoceanographic information is achieved by studying planktonic foraminiferal faunas from either size-fraction. However, because particular smaller species are either under-represented or even absent from the larger (>150 μm) size-fraction, the smaller (>63 μm) size-fraction must be included in studies of planktonic foraminifera. Furthermore, studies that involve planktonic foraminifera in the >63 μm size-fraction could provide different transfer function estimates for sea surface temperatures in areas where workers have only used larger (>125 μm and >150 μm) size-fractions.


2021 ◽  
Vol 9 (5) ◽  
pp. 519
Author(s):  
Stergios D. Zarkogiannis

Changes in the density structure of the upper oceanic water masses are an important forcing of changes in the Atlantic Meridional Overturning Circulation (AMOC), which is believed to widely affect Earth’s climate. However, very little is known about past changes in the density structure of the Atlantic Ocean, despite being extensively studied. The physical controls on planktonic foraminifera calcification are explored here, to obtain a first-order approximation of the horizontal density gradient in the eastern Atlantic during the last 200,000 years. Published records of Globigerina bulloides shells from the North and Tropical eastern Atlantic were complemented by the analysis of a South Atlantic core. The masses of the same species shells from three different dissolution assessed sediment cores along the eastern Atlantic Ocean were converted to seawater density values using a calibration equation. Foraminifera, as planktonic organisms, are subject to the physical properties of the seawater and thus their shells are sensitive to buoyancy forcing through surface temperature and salinity perturbations. By using planktonic foraminifera shell weight as an upper ocean density proxy, two intervals of convergence of the shell masses are identified during cold intervals of the last two deglaciations that may be interpreted as weak ocean density gradients, indicating nearly or completely eliminated meridional circulation, while interhemispheric Atlantic density differences appear to alleviate with the onset of the last interglacial. The results confirm the significance of variations in the density of Atlantic surface waters for meridional circulation changes.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Leanne E. Elder ◽  
Allison Y. Hsiang ◽  
Kaylea Nelson ◽  
Luke C. Strotz ◽  
Sara S. Kahanamoku ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 121-127
Author(s):  
Kurt W. Wagner

In December 2019, Kathy Dorn Severini and George Severini, residents of Fair Haven, NJ, donated a collection of photographic images to Monmouth University, a private, comprehensive 4-year institution in West Long Branch, NJ, located about a mile from the Atlantic Ocean. With a 2019 enrollment of 6,167, the University offers undergraduate and graduate programs across all traditional disciplines, as well as a Doctorate in Nursing Practice and an Ed. D. program. Monmouth University is a Grammy Museum affiliate, offers a Peace Corps Prep program that is unique in New Jersey, and is the home to the Monmouth Polling Institute.


2021 ◽  
Author(s):  
Thore Friesenhagen

Abstract. The mean test size of planktonic foraminifera (PF) is known to have increased especially during the last 12 Ma, probably in terms of an adaptive response to an intensification of the surface-water stratification. On geologically short timescales, the test size in PF is related to environmental conditions. In an optimal species-specific environment, individuals exhibit a greater maximum and average test size, while the size decreases the more unfavourable the environment becomes. An interesting case was observed in the late Neogene and Quaternary size evolution of Globorotalia menardii, which seems to be too extreme to be only explained by changes in environmental conditions. In the western tropical Atlantic Ocean (WTAO) and the Caribbean Sea, the test size more than doubles from 2.6 Ma to 1.95 Ma and 1.7 Ma, respectively, following an almost uninterrupted and successive phase of test size decrease from 4 Ma. Two hypotheses have been suggested to explain the sudden occurrence of a giant G. menardii form: it was triggered by either (1) a punctuated, regional evolutionary event or (2) the immigration of specimens from the Indian Ocean via the Agulhas Leakage. Morphometric measurements of tests from sediment samples of the Ocean Drilling Program (ODP) Leg 108 Hole 667A in the eastern tropical Atlantic Ocean (ETAO), show that the giant type already appears 0.1 Ma earlier at this location than in the WTAO, which indicates that the extreme size increase in the early Pleistocene was a tropical-Atlantic-Ocean-wide event. A coinciding change in the predominant coiling direction suggests that probably a new morphotype occurred. If the giant size and the uniform change in the predominant coiling direction are an indicator for this new type, the form already occurred in the eastern tropical Pacific Ocean at the Pliocene/Pleistocene boundary at 2.58 Ma. This finding supports the Agulhas Leakage hypothesis. However, the hypothesis of a regional, punctuated evolutionary event cannot be dismissed due to missing data from the Indian Ocean. This paper presents the AMOC/thermocline hypothesis, which not only suggests an alternative explanation for the sudden test-size increase in the early Pleistocene, but also for the test size evolution within the whole tropical Atlantic Ocean and the Caribbean Sea for the last 8 Ma. The test-size evolution shows a similar trend with indicators for changes in the Atlantic Meridional Overturning Circulation (AMOC) strength. The mechanism behind that might be that changes in the AMOC strength have a major influence on the thermal stratification of the upper water column, which is known to be the habitat of G. menardii.


Sign in / Sign up

Export Citation Format

Share Document