evolutionary event
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 2)

Cell Research ◽  
2022 ◽  
Author(s):  
Shuyuan Zhang ◽  
Qingtai Liang ◽  
Xinheng He ◽  
Chongchong Zhao ◽  
Wenlin Ren ◽  
...  
Keyword(s):  

Author(s):  
Ariane Cristina Caris Garcia ◽  
Jader de Oliveira ◽  
Daniel Cesaretto Cristal ◽  
Luiza Maria Grzyb Delgado ◽  
Isadora de Freitas Bittinelli ◽  
...  

Triatoma sordida is an endemic Chagas disease vector in South America, distributed in Brazil, Bolivia, Paraguay, and Uruguay. Chromosomal, molecular, isoenzimatic, and cuticular hydrocarbon pattern studies indicate cryptic speciation in T. sordida. Recently, T. rosai was described from specimens from Argentina initially characterized as T. sordida. Although several authors assume that the speciation process that supports this differentiation in T. sordida is the result of cryptic speciation, further morphological and/or morphometric studies are necessary to prove the application of this evolutionary event, because the only morphological intraspecific comparison performed in T. sordida is based on geometric morphometry and the only interspecific comparison made is between T. rosai and T. sordida from Brazil that evaluated morphological and morphometric differences. Based on this, morphological analyses of thorax and abdomen using Scanning Electron Microscopy and morphometric analyses of the head, thorax, and abdomen among T. sordida from Brazil, Bolivia, and Paraguay, as well as T. rosai, were performed to assess whether the evolutionary process responsible for variations is the cryptic speciation phenomenon. Morphological differences in the thorax and female external genitalia, as well as morphometric differences in the head, thorax, abdomen, pronotum, and scutellum structures, were observed. Based on this, the evolutionary process that supports, so far, these divergences observed for T. sordida populations/T. sordida subcomplex is not cryptic speciation. Moreover, we draw attention to the necessity for morphological/morphometric studies to correctly apply the cryptic species/speciation terms in triatomines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi-Tzu Kuo ◽  
Takayoshi Ishii ◽  
Jörg Fuchs ◽  
Wei-Hsun Hsieh ◽  
Andreas Houben ◽  
...  

Polyploidization is an evolutionary event leading to structural changes of the genome(s), particularly allopolyploidization, which combines different genomes of distinct species. The tetraploid species, Sorghum halepense, is assumed an allopolyploid species formed by hybridization between diploid S. bicolor and S. propinquum. The repeat profiles of S. bicolor, S. halepense, and their relatives were compared to elucidate the repeats’ role in shaping their genomes. The repeat frequencies and profiles of the three diploid accessions (S. bicolor, S. bicolor ssp. verticilliflorum, and S. bicolor var. technicum) and two tetraploid accessions (S. halepense) are similar. However, the polymorphic distribution of the subtelomeric satellites preferentially enriched in the tetraploid S. halepense indicates drastic genome rearrangements after the allopolyploidization event. Verified by CENH3 chromatin immunoprecipitation (ChIP)-sequencing and fluorescence in situ hybridization (FISH) analysis the centromeres of S. bicolor are mainly composed of the abundant satellite SorSat137 (CEN38) and diverse CRMs, Athila of Ty3_gypsy and Ty1_copia-SIRE long terminal repeat (LTR) retroelements. A similar centromere composition was found in S. halepense. The potential contribution of S. bicolor in the formation of tetraploid S. halepense is discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Danielle J. Ingle ◽  
Rebecca L. Ambrose ◽  
Sarah L. Baines ◽  
Sebastian Duchene ◽  
Anders Gonçalves da Silva ◽  
...  

AbstractSalmonella enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-) is a monophasic variant of Salmonella Typhimurium that has emerged as a global cause of multidrug resistant salmonellosis. We used Bayesian phylodynamics, genomic epidemiology, and phenotypic characterization to describe the emergence and evolution of Salmonella 4,[5],12:i:- in Australia. We show that the interruption of the genetic region surrounding the phase II flagellin, FljB, causing a monophasic phenotype, represents a stepwise evolutionary event through the accumulation of mobile resistance elements with minimal impairment to bacterial fitness. We identify three lineages with different population dynamics and discrete antimicrobial resistance profiles emerged, likely reflecting differential antimicrobial selection pressures. Two lineages are associated with travel to South-East Asia and the third lineage is endemic to Australia. Moreover antimicrobial-resistant Salmonella 4,[5],12:i- lineages efficiently infected and survived in host phagocytes and epithelial cells without eliciting significant cellular cytotoxicity, suggesting a suppression of host immune response that may facilitate the persistence of Salmonella 4,[5],12:i:-.


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


2021 ◽  
Author(s):  
Alex Dornburg ◽  
Dustin J Wcisel ◽  
Katerina Zapfe ◽  
Emma Ferraro ◽  
Lindsay Roupe-Abrams ◽  
...  

Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrates that have diversified across virtually all fresh and saltwater ecosystems. This ecological diversity raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the genomic substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249735
Author(s):  
Kanae Nishii ◽  
Michael Möller ◽  
Hidetoshi Iida

Multidomain proteins can have a complex evolutionary history that may involve de novo domain evolution, recruitment and / or recombination of existing domains and domain losses. Here, the domain evolution of the plant-specific Ca2+-permeable mechanosensitive channel protein, MID1-COMPLEMENTING ACTIVITY (MCA), was investigated. MCA, a multidomain protein, possesses a Ca2+-influx-MCAfunc domain and a PLAC8 domain. Profile Hidden Markov Models (HMMs) of domains were assessed in 25 viridiplantae proteomes. While PLAC8 was detected in plants, animals, and fungi, MCAfunc was found in streptophytes but not in chlorophytes. Full MCA proteins were only found in embryophytes. We identified the MCAfunc domain in all streptophytes including charophytes where it appeared in E3 ubiquitin ligase-like proteins. Our Maximum Likelihood (ML) analyses suggested that the MCAfunc domain evolved early in the history of streptophytes. The PLAC8 domain showed similarity to Plant Cadmium Resistance (PCR) genes, and the coupling of MCAfunc and PLAC8 seemed to represent a single evolutionary event. This combination is unique in MCA, and does not exist in other plant mechanosensitive channels. Within angiosperms, gene duplications increased the number of MCAs. Considering their role in mechanosensing in roots, MCA might be instrumental for the rise of land plants. This study provides a textbook example of de novo domain emergence, recombination, duplication, and losses, leading to the convergence of function of proteins in plants.


2021 ◽  
Vol 7 (4) ◽  
pp. 302
Author(s):  
Taisuke Seike ◽  
Yuki Narazaki ◽  
Yoshinobu Kaneko ◽  
Hiroshi Shimizu ◽  
Fumio Matsuda

Horizontal gene transfer, a process through which an organism acquires genes from other organisms, is a rare evolutionary event in yeasts. Artificial random gene transfer can emerge as a valuable tool in yeast bioengineering to investigate the background of complex phenotypes, such as heat tolerance. In this study, a cDNA library was constructed from the mRNA of a methylotrophic yeast, Ogataea polymorpha, and then introduced into Saccharomyces cerevisiae. Ogataea polymorpha was selected because it is one of the most heat-tolerant species among yeasts. Screening of S. cerevisiae populations expressing O. polymorpha genes at high temperatures identified 59 O. polymorpha genes that contribute to heat tolerance. Gene enrichment analysis indicated that certain S. cerevisiae functions, including protein synthesis, were highly temperature-sensitive. Additionally, the results confirmed that heat tolerance in yeast is a complex phenotype dependent on multiple quantitative loci. Random gene transfer would be a useful tool for future bioengineering studies on yeasts.


Sign in / Sign up

Export Citation Format

Share Document