Size variations of the calcareous nannofossil taxon Discoaster multiradiatus (Incertae sedis) across the Paleocene–Eocene thermal maximum in ocean drilling program holes 690B and 1209B

2008 ◽  
Vol 67 (3-4) ◽  
pp. 239-254 ◽  
Author(s):  
Fabrizio Tremolada ◽  
Bianca De Bernardi ◽  
Elisabetta Erba
Geology ◽  
2021 ◽  
Author(s):  
Gabriella D. Kitch ◽  
Andrew D. Jacobson ◽  
Dustin T. Harper ◽  
Matthew T. Hurtgen ◽  
Bradley B. Sageman ◽  
...  

Ocean acidification (OA) during the Paleocene-Eocene thermal maximum (PETM) likely caused a biocalcification crisis. The calcium isotope composition (δ44/40Ca) of primary carbonate producers may be sensitive to OA. To test this hypothesis, we constructed the first high-resolution, high-precision planktic foraminiferal δ44/40Ca records before and across the PETM. The records employ specimens of Morozovella spp. collected from Ocean Drilling Program Sites 1209 (Shatsky Rise, Pacific Ocean) and 1263 (Walvis Ridge, Atlantic Ocean). At Site 1209, δ44/40Ca values start at –1.33‰ during the Upper Paleocene and increase to a peak of –1.15‰ immediately before the negative carbon isotope excursion (CIE) that marks the PETM onset. Values remain elevated through the PETM interval and decrease into the earliest Eocene. A shorter-term record for Site 1263 shows a similar trend, although δ44/40Ca values are on average 0.22‰ lower and decrease shortly after the CIE onset. The trends support neither diagenetic overprinting, authigenic carbonate additions, nor changes in the δ44/40Ca value of seawater. Rather, they are consistent with a kinetic isotope effect, whereby calcite δ44/40Ca values inversely correlate with precipitation rate. Geologically rapid Ca isotope shifts appear to reflect the response of Morozovella to globally forced changes in the local carbonate geochemistry of seawater. All data combined suggest that the PETM-OA event occurred near the peak of a gradual reduction in seawater carbonate ion concentrations during a time of elevated atmospheric pCO2, potentially driven by North Atlantic igneous province emplacement.


2003 ◽  
Vol 22 (1) ◽  
pp. 29-62 ◽  
Author(s):  
R. W. Howe ◽  
R. J. Campbell ◽  
J. P. Rexilius

Abstract. During the latest Campanian–Maastrichtian the northwestern Australian margin was situated between the cool-water Austral Province to the south and the warm-water Tethyan Province to the north. The transitional nature of calcareous microfossil assemblages on the margin makes application of Tethyan biostratigraphic zonation schemes awkward, as many marker-species are missing or have different ranges. This study presents an integrated uppermost Campanian–Maastrichtian calcareous microfossil zonation based on two Ocean Drilling Program (ODP) holes on the Exmouth Plateau and eight petroleum exploration wells from the Vulcan Sub-basin. The zonation is refined and revised from the previously unpublished KCN (nannofossils), KPF (planktonic foraminifera), KBF (benthonic foraminifera) and KCCM (composite nannofossil and planktonic foraminifera) zonations, which are commonly used for petroleum exploration wells drilled on the northwestern margin. Revision of the zonations has highlighted a major Upper Campanian to lower Upper Maastrichtian disconformity on the Exmouth Plateau, which went largely unnoticed in previous examinations of the ODP material, but had been recorded previously elsewhere on the northwestern margin. The duration of the disconformity in the Vulcan Sub-basin is unclear, since intervals of the succession may be condensed in this area.


Sign in / Sign up

Export Citation Format

Share Document