the northwest pacific ocean
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Natsumi Hookabe ◽  
Naoto Jimi ◽  
Hiroyuki Yokooka ◽  
Shinji Tsuchida ◽  
Yoshihiro Fujiwara

Abstract Lacydonia Marion & Bobretsky, 1875 is the sole genus in the family Lacydoniidae Bergström, 1914. We herein describe the new species of Lacydonia shohoensis sp. nov. from 2042-m deep bottoms at Shoho Seamount of the Nishi-Shichito Ridge, the Northwest Pacific Ocean. It is most similar to L. anapaulae Rizzo et al., 2016 in having a depression on the median anterior region and lacking lateral lobes on the posterior margin of prostomium whereas it is distinguished by possessing pygidium dorsally pigmented with three reddish spots and non-pigmented pygidial lateral cirri equally elongated.


2022 ◽  
Vol 12 (01) ◽  
pp. 91-102
Author(s):  
Heng Zhang ◽  
Chao Yang ◽  
Bo Xu ◽  
Yongchuang Shi ◽  
Guoqing Zhao ◽  
...  

2021 ◽  
Vol 13 (17) ◽  
pp. 3435
Author(s):  
Fenglin Tian ◽  
Zhijiao Li ◽  
Zhonghao Yuan ◽  
Ge Chen

This paper proposes an algorithm named EddyGraph for tracking mesoscale eddy splitting and merging events. Twenty-seven years (January 1993–December 2019) of sea level anomaly (SLA) data are analyzed in the Northwest Pacific Ocean (105°E–165°W, 0°N–60°N). First, we propose a multilevel eddy identification method based on SLA to obtain an eddytree data set, representing a spatial topological tree structure of closed SLA contours with mononuclear eddies, multicore eddies and eddy seeds as the leaf nodes and eddygroups (reflecting the spatial topological relationship among eddies) as the intermediate nodes. The EddyGraph tracking algorithm is applied to the eddytree data set, which results in eddy-directed acyclic graphs (Eddy-DAGs). Only eddies contained within a common eddygroup are tracked as sources in merging events or sinks in splitting events. Furthermore, we extract typical splitting and merging events and composite the sea surface temperature anomalies (SSTAs) inside the eddygroups and eddies during these events. The results confirm that merging eddies in the same eddygroup degenerate into a single eddy and that a splitting eddy evolves into eddies within the same parent eddygroup. Moreover, we match a merging event of cyclonic eddies with in situ data of both drifters and loopers in Lagrangian trajectories. Finally, we present EddyGraph, a data set of mesoscale eddy tracking in the Northwest Pacific Ocean (105°E–165°W, 0°N–60°N).


2021 ◽  
Vol 9 (9) ◽  
pp. 938
Author(s):  
Minghua Xue ◽  
Jianfeng Tong ◽  
Siquan Tian ◽  
Xuefang Wang

Acoustic technology, as an important investigation method for fishery resources, has been widely used in zooplankton surveys. Since the Kuroshio–Oyashio confluence region has an extensive distribution of zooplankton, describing and analyzing the characteristic of the zooplankton sound scattering layer (SSL) in this area is essential for marine ecology research. To understand its spatial–temporal distribution, acoustic data of the Kuroshio–Oyashio confluence region at the Northwest Pacific Ocean, obtained by a Simrad EK80 broadband scientific echosounder in 2019, were used on board the research vessel (RV) Songhang. After noise removal, the volume backscattering strength (SV) was measured to plot the broadband scattering spectrogram of each water layer and to exhibit zooplankton distribution. The results show that the main sound scattering within 0–200 m originate from the zooplankton, and the SV of each layer increases with the rise of the transducer frequency. The magnitude of SV was closely synchronized with the solar altitude angle, which gets smaller when the angle is positive, then larger when the angle is negative. It means that the SSL has a diel vertical migration (DVM) behavior with the variation of solar height. Meanwhile, scattering strength was positively correlated with temperature in the vertical direction and showed a maximum of −54.31 dB at 20–40 m under the influence of the thermocline. The Kuroshio and Oyashio currents had an obvious influence on the scattering strengths in this study, indicating a low value when next to the Oyashio side and a high value on the Kuroshio side. The scattering strength near the warm vortex center was higher than that at the vortex edge. The results of this study could provide references for a long-term study on ecological environment variation and its impacts on zooplankton distribution.


Author(s):  
Xiaoyang Li ◽  
Ryuichi Kawamura ◽  
Atsuko Sugimoto ◽  
Kei Yoshimura

AbstractMoisture sources and their corresponding temperature and humidity are important for explosive extratropical cyclones’ development regarding latent heating. To clarify the water origins and moisture-transport processes within an explosive cyclone, we simulated an explosive cyclone migrating poleward across the Sea of Japan on November 30, 2014, by using an isotopic regional spectral model. In the cyclone’s center area, a replacement of water origins occurred during the cyclone’s development. During the early stage, the warm conveyor belt (WCB) transported large amounts of moisture from the East China Sea and Kuroshio into the cyclone’s inner region. While in the deepening stage, the cold conveyor belt (CCB) and dry intrusion (DI) conveyed more moisture from the Northwest Pacific Ocean and the Sea of Japan, respectively. Compared with the contribution of local moisture, that of remote moisture was dominant in the cyclone’s center area. Regarding the water origins of condensation within the frontal system in the deepening stage, the Northwest Pacific Ocean vapors, principally transported by the CCB, contributed 35.5% of the condensation in the western warm front. The East China Sea and Kuroshio moisture, conveyed by the WCB, accounted for 32.4% of the condensation in the cold and eastern warm fronts. In addition, condensation from the Sea of Japan, which was mainly triggered by the DI and induced by the topography, occurred on the west coast of the mainland of Japan and near the cyclone center. The spatial distribution of the isotopic composition in condensation and water vapor also supports the water-origin results.


Sign in / Sign up

Export Citation Format

Share Document