scholarly journals Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302)

2008 ◽  
Vol 23 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Appy Sluijs ◽  
Ursula Röhl ◽  
Stefan Schouten ◽  
Hans-J. Brumsack ◽  
Francesca Sangiorgi ◽  
...  
2020 ◽  
Vol 16 (6) ◽  
pp. 2381-2400 ◽  
Author(s):  
Appy Sluijs ◽  
Joost Frieling ◽  
Gordon N. Inglis ◽  
Klaas G. J. Nierop ◽  
Francien Peterse ◽  
...  

Abstract. A series of papers published shortly after the Integrated Ocean Drilling Program Arctic Coring Expedition (ACEX, 2004) on Lomonosov Ridge indicated remarkably high early Eocene sea surface temperatures (SSTs; ca. 23 to 27 ∘C) and land air temperatures (ca. 17 to 25 ∘C) based on the distribution of isoprenoid and branched glycerol dialkyl glycerol tetraether (isoGDGT and brGDGT) lipids, respectively. Here, we revisit these results using recent analytical developments – which have led to improved temperature calibrations and the discovery of new temperature-sensitive glycerol monoalkyl glycerol tetraethers (GMGTs) – and currently available proxy constraints. The isoGDGT assemblages support temperature as the dominant variable controlling TEX86 values for most samples. However, contributions of isoGDGTs from land, which we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene and part of the interval between the Paleocene–Eocene Thermal Maximum (PETM; ∼ 56 Ma) and the Eocene Thermal Maximum 2 (ETM2; ∼ 54 Ma). Background early Eocene SSTs generally exceeded 20 ∘C, with peak warmth during the PETM (∼ 26 ∘C) and ETM2 (∼ 27 ∘C). We find abundant branched GMGTs, likely dominantly marine in origin, and their distribution responds to environmental change. Further modern work is required to test to what extent temperature and other environmental factors determine their distribution. Published Arctic vegetation reconstructions indicate coldest-month mean continental air temperatures of 6–13 ∘C, which reinforces the question of whether TEX86-derived SSTs in the Paleogene Arctic are skewed towards the summer season. The exact meaning of TEX86 in the Paleogene Arctic thus remains a fundamental issue, and it is one that limits our assessment of the performance of fully coupled climate models under greenhouse conditions.


2020 ◽  
Author(s):  
Appy Sluijs ◽  
Joost Frieling ◽  
Gordon N. Inglis ◽  
Klaas G. J. Nierop ◽  
Francien Peterse ◽  
...  

Abstract. The Integrated Ocean Drilling Program Arctic Coring Expedition on Lomonosov Ridge, Arctic Ocean (IODP Expedition 302 in 2004) delivered the first Arctic Ocean sea surface temperature (SST) and land air temperature (LAT) records spanning the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) to Eocene Thermal Maximum 2 (ETM2; ~54 Ma). The distribution of glycerol dialkyl glycerol tetraether (GDGT) lipids indicated elevated SST (ca. 23 to 27 °C) and LATs (ca. 17 to 25 °C). However, recent analytical developments have led to: (i) improved temperature calibrations and (ii) the discovery of new temperature-sensitive glycerol monoalkyl glycerol tetraethers (GMGTs). Here, we have analyzed GDGT and GMGT distributions in the same sediment samples using new analytical procedures, interpret the results following the currently available proxy constraints and assess the fidelity of new temperature estimates in our study site. The influence of several confounding factors on TEX86 SST estimates, such as variations in export depth and input from exogenous sources, are typically negligible. However, contributions of isoGDGTs from land, which we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene and part of the interval between the PETM and ETM2. The isoGDGT distribution further supports temperature as the likely variable controlling TEX86 values and we conclude that background early Eocene SSTs generally exceeding 20 °C, with peak warmth during the PETM (~26 °C) and ETM2 (~27 °C). We also report high abundances of branched glycerol monoalkyl glycerol tetraethers throughout (branched GMGTs), most likely dominantly marine in origin, and show that their distribution is sensitive to environmental parameters. Further analytical, provenance and environmental work is required to test if and to what extent temperature may be an important factor. Published temperature constraints from branched GDGTs and terrestrial vegetation also support remarkable warmth in the study section and elsewhere in the Arctic basin, with vegetation proxies indicating coldest month mean temperatures of 6–13 °C. If TEX86-derived SSTs truly represent mean annual SSTs, the seasonal range of Arctic SST was in the order of 20 °C, higher than any open marine locality in the modern ocean. If SST estimates are skewed towards the summer season, seasonal ranges were comparable to those simulated in future ice-free Arctic Ocean scenarios. This uncertainty remains a fundamental issue, and one that limits our assessment of the performance of fully-coupled climate models under greenhouse conditions.


Geology ◽  
2021 ◽  
Author(s):  
Gabriella D. Kitch ◽  
Andrew D. Jacobson ◽  
Dustin T. Harper ◽  
Matthew T. Hurtgen ◽  
Bradley B. Sageman ◽  
...  

Ocean acidification (OA) during the Paleocene-Eocene thermal maximum (PETM) likely caused a biocalcification crisis. The calcium isotope composition (δ44/40Ca) of primary carbonate producers may be sensitive to OA. To test this hypothesis, we constructed the first high-resolution, high-precision planktic foraminiferal δ44/40Ca records before and across the PETM. The records employ specimens of Morozovella spp. collected from Ocean Drilling Program Sites 1209 (Shatsky Rise, Pacific Ocean) and 1263 (Walvis Ridge, Atlantic Ocean). At Site 1209, δ44/40Ca values start at –1.33‰ during the Upper Paleocene and increase to a peak of –1.15‰ immediately before the negative carbon isotope excursion (CIE) that marks the PETM onset. Values remain elevated through the PETM interval and decrease into the earliest Eocene. A shorter-term record for Site 1263 shows a similar trend, although δ44/40Ca values are on average 0.22‰ lower and decrease shortly after the CIE onset. The trends support neither diagenetic overprinting, authigenic carbonate additions, nor changes in the δ44/40Ca value of seawater. Rather, they are consistent with a kinetic isotope effect, whereby calcite δ44/40Ca values inversely correlate with precipitation rate. Geologically rapid Ca isotope shifts appear to reflect the response of Morozovella to globally forced changes in the local carbonate geochemistry of seawater. All data combined suggest that the PETM-OA event occurred near the peak of a gradual reduction in seawater carbonate ion concentrations during a time of elevated atmospheric pCO2, potentially driven by North Atlantic igneous province emplacement.


2011 ◽  
Vol 12 ◽  
pp. 15-23 ◽  
Author(s):  
C. Escutia ◽  
H. Brinkhuis ◽  
A. Klaus ◽  

Integrated Ocean Drilling Program (IODP) Expedition 318, Wilkes Land Glacial History, drilled a transect of sites across the Wilkes Land margin of Antarctica to provide a long-term record of the sedimentary archives of Cenozoic Antarctic glaciation and its intimate relationships with global climatic and oceanographic change. The Wilkes Land drilling program was undertaken to constrain the age, nature, and paleoenvironment of the previously only seismically inferred glacial sequences. The expedition (January–March 2010) recovered ~2000 meters of high-quality middle Eocene–Holocene sediments from water depths between 400 m and 4000 m at four sites on the Wilkes Land rise (U1355, U1356, U1359, and U1361) and three sites on the Wilkes Land shelf (U1357, U1358, and U1360). <br><br> These records span ~53 million years of Antarctic history, and the various seismic units (WL-S4–WL-S9) have been successfully dated. The cores reveal the history of the Wilkes Land Antarctic margin from an ice-free “greenhouse” Antarctica, to the first cooling, to the onset and erosional consequences of the first glaciation and the subsequent dynamics of the waxing and waning ice sheets, all the way to thick, unprecedented "tree ring style" records with seasonal resolution of the last deglaciation that began ~10,000 y ago. The cores also reveal details of the tectonic history of the Australo-Antarctic Gulf from 53 Ma, portraying the onset of the second phase of rifting between Australia and Antarctica, to ever-subsiding margins and deepening, to the present continental and ever-widening ocean/continent configuration. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.12.02.2011" target="_blank">10.2204/iodp.sd.12.02.2011</a>


2021 ◽  
Vol 17 (6) ◽  
pp. 2393-2425
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (SW) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. Here, we use the current proxy insights to (re-)assess the reliability of the isoGDGT-based SST signal in 69 newly analyzed and 242 reanalyzed sediments at Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We compare our results with paleoenvironmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ∼ 130 kyr resolution Maastrichtian–Oligocene SST record based on the TetraEther indeX of tetraethers with 86 carbon atoms (TEX86) confirms previous conclusions of anomalous warmth in the early Eocene SW Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the Methylation index of Branched Tetraethers with 5-methyl bonds (MBT'5me) proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for (1) an enigmatic absence of MAAT rise during the Paleocene–Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and (2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river runoff during the Paleocene–early Eocene progressively becoming more marine thereafter. This trend reflects gradual subsidence and more pronounced wet/dry seasons in the northward-drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms that most of the generated data are reliable. However, this also implies that the high TEX86-based SSTs for the Eocene SW Pacific and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain without definitive explanation.


2012 ◽  
Vol 13 ◽  
pp. 28-34 ◽  
Author(s):  
D. A. H. Teagle ◽  
B. Ildefonse ◽  
P. Blum ◽  

Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. <br><br> Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. <br><br> Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.13.04.2011" target="_blank">10.2204/iodp.sd.13.04.2011</a>


2020 ◽  
Author(s):  
Rachel Brown ◽  
Thomas Chalk ◽  
Paul Wilson ◽  
Eelco Rohling ◽  
Gavin Foster

&lt;p&gt;The intensification of Northern Hemisphere glaciation (iNHG) at 3.4-2.5 million years ago (Ma) represents the last great transition in Cenozoic climate state with the development of large scale ice sheets in the Northern Hemisphere that waxed and waned with changes in insolation. Declining atmospheric CO&lt;sub&gt;2&lt;/sub&gt; levels are widely suggested to have been the main cause of iNHG but the CO&lt;sub&gt;2&lt;/sub&gt; proxy record is too poorly resolved to provide an adequate test of this hypothesis. The boron isotope-pH proxy, in particular, has shown promise when it comes to accurately estimating past CO&lt;sub&gt;2&lt;/sub&gt; concentrations and is very good at reconstructing relative changes in CO&lt;sub&gt;2&lt;/sub&gt; on orbital timescales. Here we present a new orbitally resolved record of atmospheric CO&lt;sub&gt;2 &lt;/sub&gt;(1 sample per 3 kyr) change from Integrated Ocean Drilling Program Site 999 (12.74&amp;#730;N, -78.74 &amp;#730;E) spanning ~2.6&amp;#8211;2.4&amp;#160;Ma based on the boron isotope (&amp;#948;&lt;sup&gt;11&lt;/sup&gt;B) composition of planktic foraminiferal calcite, &lt;em&gt;Globingerinoides ruber&lt;/em&gt; (senso stricto, white). &amp;#160;We find that &amp;#948;&lt;sup&gt;11&lt;/sup&gt;B values of &lt;em&gt;G. ruber&lt;/em&gt; show clear glacial-interglacial cycles with a magnitude that is similar to those of the Mid-Pleistocene at the same site and elsewhere.&amp;#160; This new high-resolution view of CO&lt;sub&gt;2&lt;/sub&gt; during the first large glacial events of the Pleistocene confirms the importance of CO&lt;sub&gt;2&lt;/sub&gt; in amplifying orbital forcing of climate and offers new insights into the mechanistic drivers of natural CO&lt;sub&gt;2&lt;/sub&gt; change.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document