Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK

2008 ◽  
Vol 25 (2) ◽  
pp. 153-172 ◽  
Author(s):  
Martin Baron ◽  
John Parnell ◽  
Darren Mark ◽  
Andrew Carr ◽  
Milosz Przyjalgowski ◽  
...  
2006 ◽  
Vol 70 (2) ◽  
pp. 141-158 ◽  
Author(s):  
Ye. Vapnik ◽  
I. Moroz ◽  
M. Roth ◽  
I. Eliezri

AbstractKianjavato emerald (Mananjary deposits, East coast of Madagascar) was formed during metasomatic processes at the contact between pegmatites and hornblendites. The metasomatic exchange was related to a Pan-African tectonometamorphic event.Fluid inclusions in the Kianjavato emerald and quartz were studied by means of microthermometry and Raman probe analysis. Three main types of inclusions were revealed: CO2-rich, CH4-rich and aqueous-rich, with a salinity of ∼2 wt.% NaCl equiv. The inclusions occurred along the same primary and pseudosecondary trails and were considered to be formed simultaneously. Based on fluid-inclusion data, the conditions of emerald growth were 250°C < T < 450°C and P = 1.5 kbar.The fluid inclusion data for Kianjavato emerald were compared to the data for another Madagascar emerald, Ianapera. The latter is of similar age, but its genesis was determined by a shearing event. Our fluid inclusion data suggested that shearing was also important as a mechanism of introducing CO2-rich fluid for the genesis of the Kianjavato emerald.


1990 ◽  
Vol 85 (1) ◽  
pp. 182-196 ◽  
Author(s):  
J. Scott Wilber ◽  
Felix E. Mutschler ◽  
Jules D. Friedman ◽  
Robert E. Zartman

1996 ◽  
Vol 8 (5) ◽  
pp. 1065-1080 ◽  
Author(s):  
Michel Dubois ◽  
Mοhamed Ayt Ougougdal ◽  
Patrick Meere ◽  
Jean-Jacques Royer ◽  
Marie-Christine Boiron ◽  
...  

1981 ◽  
Vol 44 (336) ◽  
pp. 471-483 ◽  
Author(s):  
L. Kish ◽  
M. Cuney

AbstractThe uraninite-albite veins of the Mistamisk area occur in the argillite member of the Dunphy Formation, which is near the base of the slightly meta-morphosed Lower Proterozoic sequence of the central Labrador Trough. The vein minerals are albite, uraninite, dolomite, and chlorite, and minor quantities of quartz, tellurides, sulphides, gold, and organic material. Pitchblende and calcite are related to late remobilization.The veins were deposited in fractures by hydrothermal solutions, and metasomatism caused albitization of wall rocks. Fluid inclusions have an unusual composition, described here for the first time in connection with soda-metasomatism; the aqueous solution of the inclusions is oversaturated in NaCl and contains Ca2+ and Mg2+, and the gas phase mostly consists of N2, CO and CO2. The presence of hematite and absence of hydrocarbons indicates that the vein-forming solution was oxidizing.The temperature and pressure of vein formation, estimated from fluid inclusion data, was 300°–350° and 2.5 kbar respectively consistent with the composition of the phengite which is a common metamorphic mineral of the host rock. Vein emplacement occurred in the waning stages of the Hudsonian Orogeny, the hydrothermal solution possibly originating by metamorphism of sodic schists of the Mistamisk area, which are possibly of evaporitic origin.


2004 ◽  
Vol 68 (1) ◽  
pp. 31-46 ◽  
Author(s):  
J. Zachariáš ◽  
J. Frýda ◽  
B. Paterová ◽  
M. Mihaljevič

AbstractThe major- and trace-element chemistry of pyrite and arsenopyrite from the mesothermal Roudný gold deposits was studied by electron microprobe and laser ablation ICP-MS techniques. In total, four generations of pyrite and two of arsenopyrite were distinguished. The pyrite is enriched in As through an Fe (AsxS1–x)2 substitution mechanism. The As-rich zones of pyrite-2 (up to 4.5 wt.% As) are also enriched in gold (up to 20 ppm), lead (commonly up to 220 ppm, exceptionally up to 1500 ppm) and antimony (commonly <600 ppm, rarely up to 1350 ppm). Positive correlation of As and Au in the studied pyrites is not coupled with an Fe deficiency, in contrast to Au-rich As-bearing pyrites in Carlintype gold deposits. The As-rich pyrite-2 coprecipitated with the Sb-rich (1 –4.2 wt.%) and Au-rich (40 –150 ppm) arsenopyrite-1. The younger arsenopyrite-2 is significantly less enriched in these elements (0 –70 ppm of Au).The chemical zonality of pyrites in the Roudný gold deposits reflects the chemical evolution of orebearing fluids that are not observed in any other mineral phases. The data available suggest relatively high activity of sulphur and low activities of arsenic and gold during crystallization of the older pyrite generation (pyrite-1). Later, after particular dissolution of pyrite-1, Au-rich As-bearing pyrite-2 and arsenopyrite precipitated. These facts suggest a marked increase in the arsenic and gold activities in ore-bearing fluids. The As-content of pyrite-2 decreases in an oscillatory manner from the core to the rim, reflecting changes in the As activity or/and in the P-T conditions. The As-bearing pyrites were formed at temperatures of at least 320–330°C, based on arsenopyrite thermometers and fluid inclusion data.


2007 ◽  
Vol 413 (2) ◽  
pp. 437-440 ◽  
Author(s):  
N. S. Bortnikov ◽  
A. M. Sagalevish ◽  
V. A. Simonov ◽  
S. V. Ikorskii ◽  
E. O. Terenya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document