Post-rift salt tectonic evolution and key control factors of the Jequitinhonha deepwater fold belt, central Brazil passive margin: Insights from scaled physical experiments

2012 ◽  
Vol 37 (1) ◽  
pp. 70-100 ◽  
Author(s):  
Jürgen Adam ◽  
Zhiyuan Ge ◽  
Marianela Sanchez
2016 ◽  
Vol 46 (suppl 1) ◽  
pp. 67-82 ◽  
Author(s):  
Márcio Martins Pimentel

ABSTRACT: The Brasília Belt is one of the most complete Neoproterozoic orogens in western Gondwana. Rapid progress on the understanding of the tectonic evolution of the belt was achieved due to new U-Pb data, combined with Sm-Nd and Lu-Hf analyses. The evolution of the Brasília orogen happened over a long period of time (900 - 600 Ma) involving subduction, magmatism and terrain accretion, as a result of the consumption of the Goiás oceanic lithosphere. Provenance studies, based on U-Pb zircon data, indicate that the sedimentary rock units record different tectonic settings and stages of the evolution of the orogen. The Paranoá and Canastra groups represent passive margin sequences derived from the erosion of the São Francisco Craton. The Araxá and Ibiá groups, however, have dominant Neoproterozoic detrital zircon populations, as young as 650 Ma, suggesting derivation from the Goiás Magmatic Arc. The Goiás Magmatic Arc represents a composite arc terrain, formed by the accretion of older (ca. 0.9 - 0.8 Ga) intraoceanic island arc(s), followed by more evolved continental arcs. It extends for several thousand kilometers, from SW Goiás, through NE Brazil and into Africa. Metamorphism took place between 650 - 630 Ma reflecting final closure of the Goiás Ocean and continental collision.


1985 ◽  
Vol 114 (1-4) ◽  
pp. 193-211 ◽  
Author(s):  
C. Craddock ◽  
E.C. Hauser ◽  
H.D. Maher ◽  
A.Y. Sun ◽  
Zhu Guo-Qiang

2021 ◽  
Author(s):  
A Zagorevski ◽  
C R van Staal ◽  
J H Bédard ◽  
A Bogatu ◽  
D Canil ◽  
...  

Ophiolite complexes are an important component of oceanic terranes in the northern Cordillera and constitute a significant amount of juvenile crust added to the Mesozoic Laurentian continental margin during Cordilleran orogenesis. Despite their tectonic importance, few systematic studies of these complexes have been conducted. Detailed studies of the pseudostratigraphy, age, geochemistry, and structural setting of ophiolitic rocks in the northern Cordillera indicate that ophiolites formed in Permian to Middle Triassic suprasubduction zone settings and were obducted onto passive margin sequences. Re-evaluation of ophiolite complexes highlights fundamental gaps in the understanding of the tectonic framework of the northern Cordillera. The previous inclusion of ophiolite complexes into generic 'oceanic' terranes resulted in significant challenges for stratigraphic nomenclature, led to incorrect terrane definitions, and resulted in flawed tectonic reconstructions.


1989 ◽  
Vol 45 (4) ◽  
pp. 319-342 ◽  
Author(s):  
Ian Davison ◽  
Reginaldo Alves Dos Santos

2007 ◽  
Vol 44 (10) ◽  
pp. 1439-1452 ◽  
Author(s):  
Karsten Piepjohn ◽  
Werner von Gosen ◽  
Solveig Estrada ◽  
Franz Tessensohn

The tectonic evolution in the Piper Pass area in northern Ellesmere Island (Canadian Arctic) is characterized by the superimposition of two major deformational events: the Paleozoic Ellesmerian Orogeny and the Tertiary Eurekan deformation. It is difficult to separate the structures formed during each deformation in the parts of the Canadian Arctic in which the post-Ellesmerian and pre-Eurekan Sverdrup Basin is not preserved (Hazen Fold Belt, Central Ellesmere Fold Belt). In the vicinity of the Lake Hazen Fault Zone in the Piper Pass area, kilometre-scale kink folds, cleavage planes and SSE-directed thrust faults are unconformably overlain by Permian through Tertiary rocks of the Sverdrup Basin, which clearly indicates that they are related to the Ellesmerian Orogeny. However, the steep faults of the Lake Hazen Fault Zone are characterized by possible lateral movements and by NNW–SSE compression that cut through or affect both the pre-Ellesmerian Franklinian strata, as well as the post-Ellesmerian Sverdrup Basin deposits. These structures can clearly be assigned to post-mid Cretaceous movements of the Eurekan deformation. The Piper Pass area is a key area in which it is possible to recognize and distinguish Ellesmerian from Eurekan structures.


2003 ◽  
Vol 40 (12) ◽  
pp. 1739-1753 ◽  
Author(s):  
Leanne J Pyle ◽  
Christopher R Barnes

The ancient Laurentian margin rifted in the latest Neoproterozoic to early Cambrian but appears not to have developed as a simple passive margin through a long, post-rift, drift phase. Stratigraphic and conodont biostratigraphic information from four platform-to-basin transects across the margin has advanced our knowledge of the early Paleozoic evolution of the margin. In northeastern British Columbia, two northern transects span the Macdonald Platform to Kechika Trough and Ospika Embayment, and a third transect spans the parautochthonous Cassiar Terrane. In the southern Rocky Mountains, new conodont biostratigraphic data for the Ordovician succession of the Bow Platform is correlated to coeval basinal facies of the White River Trough. In total, from 26 stratigraphic sections, over 25 km of strata were measured and > 1200 conodont samples were collected that yielded over 100 000 conodont elements. Key zonal species were used for regional correlation of uppermost Cambrian to Middle Devonian strata along the Cordillera. The biostratigraphy temporally constrains at least two periods of renewed extension along the margin, in the latest Cambrian and late Early Ordovician. Alkalic volcanics associated with abrupt facies changes across the ancient shelf break, intervals of slope debris breccia deposits, and distal turbidite flows suggest the margin was characterized by intervals of volcanism, basin foundering, and platform flooding. Siliciclastics in the succession were sourced by a reactivation of tectonic highs, such as the Peace River Arch. Prominent hiatuses punctuate the succession, including unconformities of early Late Ordovician, sub-Llandovery, possibly Early to Middle Silurian and Early Devonian ages.


Sign in / Sign up

Export Citation Format

Share Document