Misexpression of Sox9 in mouse limb bud mesenchyme induces polydactyly and rescues hypodactyly mice

2007 ◽  
Vol 26 (4) ◽  
pp. 224-233 ◽  
Author(s):  
Haruhiko Akiyama ◽  
H. Scott Stadler ◽  
James F. Martin ◽  
Takahiro M. Ishii ◽  
Philip A. Beachy ◽  
...  
Keyword(s):  
Limb Bud ◽  
Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3339-3353 ◽  
Author(s):  
D.T. Chang ◽  
A. Lopez ◽  
D.P. von Kessler ◽  
C. Chiang ◽  
B.K. Simandl ◽  
...  

The hedgehog (hh) segmentation gene of Drosophila melanogaster encodes a secreted signaling protein that functions in the patterning of larval and adult structures. Using low stringency hybridization and degenerate PCR primers, we have isolated complete or partial hh-like sequences from a range of invertebrate species including other insects, leech and sea urchin. We have also isolated three mouse and two human DNA fragments encoding distinct hh-like sequences. Our studies have focused upon Hhg-1, a mouse gene encoding a protein with 46% amino acid identity to hh. The Hhg-1 gene, which corresponds to the previously described vhh-1 or sonic class, is expressed in the notochord, ventral neural tube, lung bud, hindgut and posterior margin of the limb bud in developing mouse embryos. By segregation analysis the Hhg-1 gene has been localized to a region in proximal chromosome 5, where two mutations affecting mouse limb development previously have been mapped. In Drosophila embryos, ubiquitous expression of the Hhg-1 gene yields effects upon gene expression and cuticle pattern similar to those observed for the Drosophila hh gene. We also find that cultured quail cells transfected with a Hhg-1 expression construct can induce digit duplications when grafted to anterior or mid-distal but not posterior borders within the developing chick limb; more proximal limb element duplications are induced exclusively by mid-distal grafts. Both in transgenic Drosophila embryos and in transfected quail cells, the Hhg-1 protein product is cleaved to yield two stable fragments from a single larger precursor. The significance of Hhg-1 genetic linkage, patterning activity and proteolytic processing in Drosophila and chick embryos is discussed.


1997 ◽  
Vol 21 (4) ◽  
pp. 290-300 ◽  
Author(s):  
Rita A. Meyer ◽  
Matthew F. Cohen ◽  
Scott Recalde ◽  
Jozsef Zakany ◽  
Sheila M. Bell ◽  
...  

Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 325-339
Author(s):  
T. E. Kwasigroch ◽  
D. M. Kochhar

Two techniques were used to examine the effect of vitamin A compounds (vitamin A acid = retinoic acid and vitamin A acetate) upon the relative strengths of adhesion among mouse limb-bud mesenchymal cells. Treatment with retinoic acid in vivo and with vitamin A acetate in vitro reduced the rate at which the fragments of mesenchyme rounded-up when cultured on a non-adhesive substratum, but these compounds did not alter the behavior of tissues tested in fragment-fusion experiments. These conflicting results indicate that the two tests measure different activities of cells and suggest that treatment with vitamin A alters the property(ies) of cells which regulate the internal viscosity of tissues.


1973 ◽  
Vol 85 (4) ◽  
pp. 499-513 ◽  
Author(s):  
Richard G. Skalko ◽  
Ronald R. Cowden

2003 ◽  
Vol 162 (5) ◽  
pp. 753-756 ◽  
Author(s):  
Gilbert Weidinger ◽  
Randall T. Moon

Secreted Wnt ligands appear to activate a variety of signaling pathways. Two papers in this issue now present genetic evidence that “noncanonical” Wnt signaling inhibits the “canonical” Wnt/β-catenin pathway. Westfall et al. (2003a) show that zebrafish embryos lacking maternal Wnt-5 function are dorsalized due to ectopic activation of β-catenin, whereas Topol et al. (2003) report that chondrogenesis in the distal mouse limb bud depends on inhibition of Wnt/β-catenin signaling by a paralogue of Wnt-5. These studies present the first genetic confirmation of the previous hypothesis that vertebrate Wnt signaling pathways can act in an antagonistic manner.


1998 ◽  
Vol 138 (1-2) ◽  
pp. 151-161 ◽  
Author(s):  
Marjolein van Kleffens ◽  
Cora Groffen ◽  
Roberto R. Rosato ◽  
Stefan M. van den Eijnde ◽  
Johan W. van Neck ◽  
...  

1985 ◽  
Vol 55 (1-2) ◽  
pp. 113-123 ◽  
Author(s):  
X. Desbiens ◽  
F. Carette ◽  
L. Meunier ◽  
A. Bart
Keyword(s):  
Limb Bud ◽  

2020 ◽  
Vol 8 (4) ◽  
pp. 31
Author(s):  
Ines Desanlis ◽  
Rachel Paul ◽  
Marie Kmita

Limb patterning relies in large part on the function of the Hox family of developmental genes. While the differential expression of Hox genes shifts from the anterior–posterior (A–P) to the proximal–distal (P–D) axis around embryonic day 11 (E11), whether this shift coincides with a more global change of A–P to P–D patterning program remains unclear. By performing and analyzing the transcriptome of the developing limb bud from E10.5 to E12.5, at single-cell resolution, we have uncovered transcriptional trajectories that revealed a general switch from A–P to P–D genetic program between E10.5 and E11.5. Interestingly, all the transcriptional trajectories at E10.5 end with cells expressing either proximal or distal markers suggesting a progressive acquisition of P–D identity. Moreover, we identified three categories of genes expressed in the distal limb mesenchyme characterized by distinct temporal expression dynamics. Among these are Hoxa13 and Hoxd13 (Hox13 hereafter), which start to be expressed around E10.5, and importantly the binding of the HOX13 factors was observed within or in the neighborhood of several of the distal limb genes. Our data are consistent with previous evidence suggesting that the transition from the early/proximal to the late/distal transcriptome of the limb mesenchyme largely relies on HOX13 function. Based on these results and the evidence that HOX13 factors restrict Hoxa11 expression to the proximal limb, in progenitor cells of the zeugopod, we propose that HOX13 act as a key determinant of P–D patterning.


Development ◽  
2011 ◽  
Vol 138 (6) ◽  
pp. 1227-1234 ◽  
Author(s):  
B. Boehm ◽  
M. Rautschka ◽  
L. Quintana ◽  
J. Raspopovic ◽  
Z. Jan ◽  
...  
Keyword(s):  
Limb Bud ◽  

Sign in / Sign up

Export Citation Format

Share Document