Ameloblastin promotes polarization of ameloblast cell lines in a 3-D cell culture system

2021 ◽  
Author(s):  
Gayathri Visakan ◽  
Jingtan Su ◽  
Janet Moradian-Oldak
2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Diem-Lan Vu ◽  
Albert Bosch ◽  
Rosa M. Pintó ◽  
Enric Ribes ◽  
Susana Guix

ABSTRACT MLB astroviruses were identified 10 years ago in feces from children with gastroenteritis of unknown etiology and have been unexpectedly detected in severe cases of meningitis/encephalitis, febrile illness of unknown etiology, and respiratory syndromes. The aim of this study was to establish a cell culture system supporting MLB astrovirus replication. We used two clinical strains to infect several cell lines, an MLB1 strain from a gastroenteritis case, and an MLB2 strain associated with a neurologic infection. Efforts to propagate the viruses in the Caco-2 cell line were unsuccessful. In contrast, we identified two human nonintestinal cell lines, Huh-7 and A549, permissive for both genotypes. After serial passages in the Huh-7.5 cell line, the adapted strains were able to establish persistent infections in the Huh-7.5, Huh-7AI, and A549 cell lines, with high viral loads (up to 10 log10 genome copies/ml) detected by quantitative reverse transcription-PCR (RT-qPCR) in the culture supernatant. Immunofluorescence assays demonstrated infection in about 10% of cells in persistently infected cultures. Electron microscopy revealed particles of 32 to 33 nm in diameter after negative staining of cell supernatants and capsid arrays in ultrathin sections with a particularly high production in Huh-7.5 cells. Interferon (IFN) expression by infected cells and effect of exogenous IFN varied depending on the type of infection and the cell line. The availability of a cell culture system to propagate MLB astroviruses represents a key step to better understand their replicative cycle, as well as a source of viruses to conduct a wide variety of basic virologic studies. IMPORTANCE MLB astroviruses are emerging viruses infecting humans. More studies are required to determine their exact epidemiology, but several reports have already identified them as the cause of unexpected clinical diseases, including severe neurologic diseases. Our study provides the first description of a cell culture system for the propagation of MLB astroviruses, enabling the study of their replicative cycle. Moreover, we demonstrated the unknown capacity of MLB astrovirus to establish persistent infections in cell culture. Whether these persistent infections are also established in vivo remains unknown, but the clinical consequences would be of high interest if persistence was confirmed in vivo. Finally, our analysis of IFN expression provides some trails to understand the mechanism by which MLB astroviruses can cause persistent infections in the assayed cultures.


2016 ◽  
Vol 107 (12) ◽  
pp. 1858-1866 ◽  
Author(s):  
Ayako Aihara ◽  
Natsuki Abe ◽  
Koichiro Saruhashi ◽  
Tatsuro Kanaki ◽  
Taito Nishino

2016 ◽  
Vol 68 (5) ◽  
pp. 1813-1825 ◽  
Author(s):  
Petra H. Jakob ◽  
Jessica Kehrer ◽  
Peter Flood ◽  
Catharina Wiegel ◽  
Uta Haselmann ◽  
...  

BioTechniques ◽  
2008 ◽  
Vol 45 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Benny Abraham Kaipparettu ◽  
Isere Kuiatse ◽  
Bonita Tak-Yee Chan ◽  
Meju Benny Kaipparettu ◽  
Adrian V. Lee ◽  
...  

2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


Sign in / Sign up

Export Citation Format

Share Document