scholarly journals Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting

2018 ◽  
Vol 136 ◽  
pp. 398-406 ◽  
Author(s):  
G.H. Cao ◽  
T.Y. Sun ◽  
C.H. Wang ◽  
Xing Li ◽  
M. Liu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1001
Author(s):  
Zongxian Song ◽  
Wenbin Gao ◽  
Dongpo Wang ◽  
Zhisheng Wu ◽  
Meifang Yan ◽  
...  

This study investigates the very-high-cycle fatigue (VHCF) behavior at elevated temperature (650 °C) of the Inconel 718 alloy fabricated by selective laser melting (SLM). The results are compared with those of the wrought alloy. Large columnar grain with a cellular structure in the grain interior and Laves/δ phases precipitated along the grain boundaries were exhibited in the SLM alloy, while fine equiaxed grains were present in the wrought alloy. The elevated temperature had a minor effect on the fatigue resistance in the regime below 108 cycles for the SLM alloy but significantly reduced the fatigue strength in the VHCF regime above 108 cycles. Both the SLM and wrought specimens exhibited similar fatigue resistance in the fatigue life regime of fewer than 107–108 cycles at elevated temperature, and the surface initiation mechanism was dominant in both alloys. In a VHCF regime above 107–108 cycles at elevated temperature, the wrought material exhibited slightly better fatigue resistance than the SLM alloy. All fatigue cracks are initiated from the internal defects or the microstructure discontinuities. The precipitation of Laves and δ phases is examined after fatigue tests at high temperatures, and the effect of microstructure on the formation and the propagation of the microstructural small cracks is also discussed.


2018 ◽  
Vol 98 (12) ◽  
pp. 547-555 ◽  
Author(s):  
Zhanyong Zhao ◽  
Hongqiao Qu ◽  
Peikang Bai ◽  
Jing Li ◽  
Liyun Wu ◽  
...  

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 21 ◽  
Author(s):  
Jun-Ren Zhao ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui

We used selective laser melting (SLM) Inconel 718 (coded AS) to carry out three heat treatment processes: (1) double aging (coded A), (2) solid solution + A (coded SA), (3) homogenization + SA (coded HSA) in order to investigate the effects of microstructure changes and tensile strength enhancement on erosion resistance. The as-SLM IN718 and three heat-treated specimens were subjected to clarify the effects of erosion-induced phase transformation on tensile mechanical properties. All heat-treated specimens showed better erosion resistance than as-SLM IN718 did at all impact angles. The as-SLM IN718 and the three heat-treated specimens produced new γ′ phase or metal-oxide via particle erosion, which increased the surface hardness of the material. The thickness of the erosion affected zone is 200 μm, which is the main cause of tensile embrittlement.


Sign in / Sign up

Export Citation Format

Share Document