Effects of Ag on the age hardening response and intergranular corrosion resistance of Al-Mg alloys

2019 ◽  
Vol 147 ◽  
pp. 84-92 ◽  
Author(s):  
Cheng Guo ◽  
Haitao Zhang ◽  
Zibin Wu ◽  
Dongtao Wang ◽  
Baomian Li ◽  
...  
2014 ◽  
Vol 794-796 ◽  
pp. 253-258 ◽  
Author(s):  
Chun Yan Meng ◽  
Di Zhang ◽  
Hua Cui ◽  
Ji Shan Zhang ◽  
Lin Zhong Zhuang

In order to improve the intergranular corrosion resistance of high strength Al-Mg alloys, the effect of stabilizing treatment was systematically investigated. Microstructure evolutions of Al-Mg alloys after different stabilizing treatments have been studied by scanning electron microscopy and optical microscopy. Mechanical properties and corrosion resistance were measured. It was found that the mass loss of samples after sensitizing treatment decreased with an increase in the stabilizing temperature. It was suggested that the susceptibility to intergranular corrosion for high strength Al-Mg alloys has a strong relation to the stabilizing temperature that modify the morphology and distribution of precipitates. The precipitates continuously precipitated along the grain boundary when the stabilizing temperature was lower than 250°C, corresponding to a poor corrosion resistance. However, the precipitates randomly precipitated in the matrix as globular particles, and discontinuously precipitated at the grain boundary after stabilized at 250°C and 275°C, resulted in an improved intergranular corrosion resistance.


Author(s):  
Changqing Ye ◽  
Weiguo Zhai ◽  
Guangyao Lu ◽  
Qingsong Liu ◽  
Liang Ni ◽  
...  

In this paper, shielded metal arc welding on the dissimilar joint between 2205 duplex stainless steel and composite bimetallic plates (304 L stainless steel/10CrNi3MoV steel) with a filler metal E2209 was performed. Furthermore, the microstructure, phase, mechanical properties and intergranular corrosion resistance of the joints were investigated and element distributions of the interfaces were characterized. The results show that austenite transformed to ferrite under the influence of welding thermal cycle, and then a large amount of ferrite appeared in heat affected zone (HAZ) of 2205 duplex stainless steel. Coarse bainite grains were formed in HAZ of the 10CrNi3MoV steel near the fusion line with high temperature welding thermal cycle. Fine granular bainite was also generated in HAZ of 10CrNi3MoV steel due to the relatively short exposure time to the active temperature of grain growth. Local peak temperature near the base 10CrNi3MoV steel was still high enough to recrystallize the 10CrNi3MoV steel to form partial-recrystallization HAZ due to phase change. The filler metal was compatible with the three kinds of base materials. The thickness of the elemental diffusion interfaces layers was about 100 µm. The maximum microhardness value was obtained in the HAZ of 2205 duplex stainless steel (287 ± 14 HV), and the minimum one appeared in HAZ of SS304L (213 ± 5 HV). The maximum tensile strength of the welded joint was about 670 ± 6 MPa, and the tensile specimens fractured in ductile at matrix of the composite bimetallic plates. The impact energy of the weld metal and HAZ of the 10CrNi3MoV steel tested at –20 °C were 274 ± 6 J and 308 ± 5 J, respectively. Moreover, the intergranular corrosion resistance of the weldment including 304 L stainless steel, weld metal, HAZs and 2205 duplex stainless steel was in good agreement with the functional design requirements of materials corrosion resistance.


Micron ◽  
2021 ◽  
pp. 103202
Author(s):  
Meng-jia Li ◽  
Shuo Liu ◽  
Xiang-dong Wang ◽  
Yun-jia Shi ◽  
Qing-lin Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document