scholarly journals A coupled Two-relaxation-time Lattice Boltzmann-Volume penalization method for flows past obstacles

Author(s):  
Xiongwei Cui ◽  
Zhikai Wang ◽  
Xiongliang Yao ◽  
Minghao Liu ◽  
Fulin Yu
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Kai Guo ◽  
Xiongwei Cui ◽  
Minghao Liu

A coupled Lattice Boltzmann-Volume Penalization (LBM-VP) with local mesh refinement is presented to simulate flows past obstacles in this article. Based on the finite-difference LBM, the local mesh refinement is incorporated into the LBM to improve computing efficiency. The volume penalization method is introduced into the LBM by an external forcing term. In the LBM-VP method, the processes of interpolating velocities on the boundaries points and distributing the force density to the Eulerian points near the boundaries are unnecessary. Performing the LBM-VP on a certain point, only the variables of this point are needed, which means the whole procedure can be conducted parallelly. As a consequence, the whole computing efficiency can be improved. To verify the presented method, flows past a single circular cylinder, a pair of cylinders in tandem arrangement, and a NACA-0012 are investigated. A good agreement between the present results and the data in the previous literatures is achieved, which demonstrates the accuracy and effectiveness of the present method to solve the flows past obstacle problems.


2019 ◽  
Vol 31 (01) ◽  
pp. 2050017
Author(s):  
Liang Wang ◽  
Xuhui Meng ◽  
Hao-Chi Wu ◽  
Tian-Hu Wang ◽  
Gui Lu

The discrete effect on the boundary condition has been a fundamental topic for the lattice Boltzmann method (LBM) in simulating heat and mass transfer problems. In previous works based on the anti-bounce-back (ABB) boundary condition for convection-diffusion equations (CDEs), it is indicated that the discrete effect cannot be commonly removed in the Bhatnagar–Gross–Krook (BGK) model except for a special value of relaxation time. Targeting this point in this paper, we still proceed within the framework of BGK model for two-dimensional CDEs, and analyze the discrete effect on a non-halfway single-node boundary condition which incorporates the effect of the distance ratio. By analyzing an unidirectional diffusion problem with a parabolic distribution, the theoretical derivations with three different discrete velocity models show that the numerical slip is a combined function of the relaxation time and the distance ratio. Different from previous works, we definitely find that the relaxation time can be freely adjusted by the distance ratio in a proper range to eliminate the numerical slip. Some numerical simulations are carried out to validate the theoretical derivations, and the numerical results for the cases of straight and curved boundaries confirm our theoretical analysis. Finally, it should be noted that the present analysis can be extended from the BGK model to other lattice Boltzmann (LB) collision models for CDEs, which can broaden the parameter range of the relaxation time to approach 0.5.


2007 ◽  
Vol 18 (04) ◽  
pp. 635-643 ◽  
Author(s):  
XIAOWEN SHAN ◽  
HUDONG CHEN

We formulate a simple extension to the Bhatnagar-Gross-Krook collision model by expanding the distribution function in Hermite polynomials and assigning a relaxation time to each hydrodynamic moment. By discretizing the velocity space, multiple-relaxation-time lattice Boltzmann models can be constructed. The transport coefficients are analytically calculated and numerically verified. At the lowest order, allowing different relaxation rates for the second and third Hermite components results in a variable Prandtl number. Comparing with the previously proposed multiple-relaxation-time lattice Boltzmann models, the present formulation is general in the sense that it is independent of the underlying lattice structure and does not require a procedure for transformation of base vectors.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


Sign in / Sign up

Export Citation Format

Share Document