Reinforced concrete beams with web openings: A state of the art review

2012 ◽  
Vol 40 ◽  
pp. 90-102 ◽  
Author(s):  
A. Ahmed ◽  
M.M. Fayyadh ◽  
S. Naganathan ◽  
K. Nasharuddin
Author(s):  
Elsayed Ismail ◽  
Mohamed S. Issa ◽  
Khaled Elbadry

Abstract Background A series of nonlinear finite element (FE) analyses was performed to evaluate the different design approaches available in the literature for design of reinforced concrete deep beam with large opening. Three finite element models were developed and analyzed using the computer software ATENA. The three FE models of the deep beams were made for details based on three different design approaches: (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978), (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006), and Strut and Tie method (STM) as per ACI 318-14 (ACI318 Committee, Building Code Requirements for Structural Concrete (ACI318-14), 2014). Results from the FE analyses were compared with the three approaches to evaluate the effect of different reinforcement details on the structural behavior of transfer deep beam with large opening. Results The service load deflection is the same for the three models. The stiffnesses of the designs of (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and STM reduce at a load higher than the ultimate design load while the (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) reduces stiffness at a load close to the ultimate design load. The deep beam designed according to (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) model starts cracking at load higher than the beam designed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) method. The deep beam detailed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) and (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) failed due to extensive shear cracks. The specimen detailed according to STM restores its capacity after initial failure. The three models satisfy the deflection limit. Conclusion It is found that the three design approaches give sufficient ultimate load capacity. The amount of reinforcement given by both (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) is the same. The reinforcement used by the STM method is higher than the other two methods. Additional reinforcement is needed to limit the crack widths. (Mansur, M. A., Design of reinforced concrete beams with web openings, (2006)) method gives lesser steel reinforcement requirement and higher failure load compared to the other two methods.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5804
Author(s):  
Hyeong-Gook Kim ◽  
Jung-Yoon Lee ◽  
Kil-Hee Kim

An experimental case study was carried out to investigate the shear performance of reinforced concrete beams with small circular openings under a cyclic anti-symmetric bending moment. The openings were strengthened by using a newly developed reinforcement continuously bent into rectangular and octagonal shapes, which was convenient for installation and effective for crack control. The presence of web opening reinforcement, the reinforcing method, and the web opening spacing were employed as main variables in the design of five specimens. The cyclic performance of all specimens was evaluated in terms of failure mode, crack pattern, strength and stiffness degradation, and strain distribution. Experimental results were discussed to assess the suitability of the proposed web opening reinforcement in RC web opening beams. It was confirmed that the proposed web opening reinforcement exhibited outstanding crack control and served as a shear resistance component in place of the concrete cross-section lost due to web openings. Finally, the shear strength of all specimens, obtained from the cyclic loading tests, were compared with those obtained from the equation proposed by Mansur (1998) and the Architectural Institute of Japan standard 2010.


Sign in / Sign up

Export Citation Format

Share Document