scholarly journals Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

2017 ◽  
Vol 135 ◽  
pp. 122-132 ◽  
Author(s):  
Ke An ◽  
Lang Yuan ◽  
Laura Dial ◽  
Ian Spinelli ◽  
Alexandru D. Stoica ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matteo Busi ◽  
Nikola Kalentics ◽  
Manuel Morgano ◽  
Seth Griffiths ◽  
Anton S. Tremsin ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40$$\%$$ % or 80$$\%$$ % respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54$$\%$$ % and 104$$\%$$ % respectively, compared to the conventional LSP treatment.


2019 ◽  
Vol 28 ◽  
pp. 228-235 ◽  
Author(s):  
John D. Roehling ◽  
William L. Smith ◽  
Tien T. Roehling ◽  
Bey Vrancken ◽  
Gabriel M. Guss ◽  
...  

2021 ◽  
Author(s):  
Matteo Busi ◽  
Nikola Kalentics ◽  
Manuel Morgano ◽  
Seth Griffiths ◽  
Anton S. Tremsin ◽  
...  

Abstract Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40% or 80% respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 57% and 104% respectively, compared to the conventional LSP treatment.


Sign in / Sign up

Export Citation Format

Share Document