Balance on the charge generation, separation and transfer performance of different TiO 2 nanostructures in quantum dot sensitized solar cells

2017 ◽  
Vol 94 ◽  
pp. 463-471 ◽  
Author(s):  
Zhuoyin Peng ◽  
Xiangfeng Chen ◽  
Yueli Liu ◽  
Jianlin Chen ◽  
Jian Chen
Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2638
Author(s):  
Nguyen Thi Kim Chung ◽  
Phat Tan Nguyen ◽  
Ha Thanh Tung ◽  
Dang Huu Phuc

In this study, we provide the reader with an overview of quantum dot application in solar cells to replace dye molecules, where the quantum dots play a key role in photon absorption and excited charge generation in the device. The brief shows the types of quantum dot sensitized solar cells and presents the obtained results of them for each type of cell, and provides the advantages and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the next researching.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850090
Author(s):  
Zhou Liu ◽  
Zhuoyin Peng ◽  
Jianlin Chen ◽  
Wei Li ◽  
Jian Chen ◽  
...  

Cu2GeSe3 quantum dot is introduced to instead of non-toxic CuInSe2 as a sensitizer for solar cells, which is employed to enhance the photovoltaic performance. Cu2GeSe3 quantum dots with various sizes are prepared by thermolysis process, which are employed for the fabrication of quantum dot-sensitized solar cells (QDSSC) according to assembly linking process. The optical absorption properties of the Cu2GeSe3 quantum dot-sensitized photo-electrodes have been obviously enhanced by the size optimization of quantum dots, which are better than that of CuInSe2-based photo-electrodes. Due to the balance on the deposition quantity and charge transfer property of the quantum dots, 3.9[Formula: see text]nm-sized Cu2GeSe3 QDSSC exhibits the highest current density value and incident photon conversion efficiency response, which result in a higher photovoltaic conversion efficiency than that of CuInSe2 QDSSC. The modulation of Cu2GeSe3 QDs will further improve the performance of photovoltaic devices.


2019 ◽  
Vol 299 ◽  
pp. 206-212 ◽  
Author(s):  
Zhuoyin Peng ◽  
Zhou Liu ◽  
Jianlin Chen ◽  
Yanjie Ren ◽  
Wei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document