A high-strength and low-susceptibility magnetic resonance biopsy material-titanium bronze

2021 ◽  
pp. 131568
Author(s):  
Xiaofei Liang ◽  
Ping Liu ◽  
Xiaohong Chen ◽  
Honglei Zhou ◽  
Shaoli Fu ◽  
...  
1997 ◽  
Vol 59 (4) ◽  
pp. 303-306 ◽  
Author(s):  
Kazutaka YAMADA ◽  
Chun-Jun CHEN ◽  
Hiroshi SATOH ◽  
Toyohiko HIROTA ◽  
Kazuharu AOYAGI ◽  
...  

2018 ◽  
Vol 16 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Martin N Stienen ◽  
Jorn Fierstra ◽  
Athina Pangalu ◽  
Luca Regli ◽  
Oliver Bozinov

Abstract BACKGROUND Recently, the use of intraoperative magnetic resonance imaging (ioMRI) has evolved in neurosurgery. Challenges related to ioMRI-augmented procedures are significant, since the magnetic field creates a potentially hazardous environment. Strict safety guidelines in the operating room (OR) are necessary. Checklists can minimize errors while increasing efficiency and improving workflow. OBJECTIVE To describe the Zurich checklists for safety in the ioMRI environment. METHODS We summarize the checklist protocol and the experience gained from over 300 surgical procedures performed over a 4-yr period using this new system for transcranial or transsphenoidal surgery in a 2-room high-field 3 Tesla ioMRI suite. RESULTS Particularities of the 2-room setting used at our institution can be summarized as (1) patient transfer from a sterile to a nonsterile environment and (2) patient transfer from a zone without to a zone with a high-strength magnetic field. Steps on the checklist have been introduced for reasons of efficient workflow, safety pertaining to the strength of the magnetic field, or sterility concerns. Each step in the checklist corresponds to a specific phase and particular actions taken during the workflow in the ioMRI suite. Most steps are relevant to any 2-room ioMRI-OR suite. CONCLUSION The use of an ioMRI-checklist promotes a zero-tolerance attitude for errors, can lower complications, and can help create an environment that is both efficient and safe for the patient and the OR personnel. We highly recommend the use of a surgical checklist when applying ioMRI.


2013 ◽  
Vol 8 (2) ◽  
pp. 164 ◽  
Author(s):  
Craig D McClain ◽  
Wilson T Chimbira ◽  
◽  

Intra-operative magnetic resonance imaging (ioMRI) is an evolving technology that offers precise intra-cranial lesion localisation and intra-operative navigation by combining the high-resolution imaging capabilities of MRI with an operative suite. Developed in the 1990s, ioMRI presents caregivers with a variety of unique challenges revolving around performing surgical procedures in an operating theatre with a high-strength magnetic field. Different types of ioMRI systems exist, differentiated by the relative mobility of the patient and magnet. As with any MRI environment, safety is of paramount concern. Published safety guidelines exist from both the American College of Radiology and the American Society of Anesthesiologists. A variety of checklists can be used to enhance the safety of the ioMRI suite. There are a variety of anaesthetic considerations when caring for patients in this environment including concerns related to the anaesthesia equipment, the patient and the general MRI environment. A multidisciplinary approach can encourage safety and efficiency in this unique operating room. The purpose of this review is to discuss the variety of topics that anaesthesiologists need to consider using this technology, including the indications, specific equipment considerations and unique safety aspects of caring for patients in the ioMRI suite. While performing surgery in a high-strength magnetic field environment carries its own special risks, each type of ioMRI suite presents its own unique challenges to patient safety. Although the challenges are significant, safe care and optimal outcomes are certainly possible with appropriate understanding of the factors unique to the ioMRI environment, good communication, a collaborative approach and proper procedural planning.


US Neurology ◽  
2014 ◽  
Vol 10 (01) ◽  
pp. 61
Author(s):  
Craig D McClain ◽  
Wilson T Chimbira ◽  
◽  

Intra-operative magnetic resonance imaging (ioMRI) is an evolving technology that offers precise intra-cranial lesion localization and intra-operative navigation by combining the high-resolution imaging capabilities of MRI with an operative suite. Developed in the 1990s, ioMRI presents caregivers with a variety of unique challenges revolving around performing surgical procedures in an operating theatre with a high-strength magnetic field. Different types of ioMRI systems exist, differentiated by the relative mobility of the patient and magnet. As with any MRI environment, safety is of paramount concern. Published safety guidelines exist from both the American College of Radiology and the American Society of Anesthesiologists. A variety of checklists can be used to enhance the safety of the ioMRI suite. There are a variety of anesthetic considerations when caring for patients in this environment including concerns related to the anesthesia equipment, the patient, and the general MRI environment. A multidisciplinary approach can encourage safety and efficiency in this unique operating room. The purpose of this review is to discuss the variety of topics that anesthesiologists need to consider using this technology, including the indications, specific equipment considerations, and unique safety aspects of caring for patients in the ioMRI suite. While performing surgery in a high-strength magnetic field environment carries its own special risks, each type of ioMRI suite presents its own unique challenges to patient safety. Although the challenges are significant, safe care and optimal outcomes are certainly possible with appropriate understanding of the factors unique to the ioMRI environment, good communication, a collaborative approach, and proper procedural planning.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document