Performance and emission characteristics of rice bran and alga biodiesel blends in a CI engine

2016 ◽  
Vol 3 (6) ◽  
pp. 2468-2474 ◽  
Author(s):  
J. Jayaprabakar ◽  
A. Karthikeyan

In recent trends due to the increase in rate of petrol and diesel prices biodiesel has been used as an alternate fuel in many of the fast developing countries. However in our country also many research work has been done using different oils. In this paper instead of using a single oil, two different oils was mixed with diesel in different blends and the emissions were calculated and the results were plotted. The two different oils used was the Cashew nutshell liquid (CNSL) and the Rice bran oil. Cashew oil is found to be a by-product which is available from the Cashew industry and after the transesterification process the cardanol obtained was used without any modifications. Rice bran oil is mostly found in the places where rice is grown in a huge quantity and more number of research works has not been done in this oil. By the transesterification process the rice bran oil was prepared and mixed with the CNSL in the different proportions, which was also mixed with diesel in some amounts and the different characteristics were evaluated and plotted.


Author(s):  
P. Sivashankari ◽  
A. Krishnamoorthy ◽  
K.N. Balaji

Due to depletion of fossil fuels, concerns about energy security and global warming make renewable energy resources more attractive. In this regard, using biodiesel seems to be a possible and feasible source of energy for transportation. This paper presents an investigation of the performance and emission characteristics of CI engine using 10% blend of rice bran oil as fuel and ceramic oxide coated piston.


Author(s):  
A. Kandasamy ◽  
D.B. Jabaraj

In this work, experimental investigation was carried out to test the performance and emission characteristics of a CI engine using diesel and cotton seed oil methyl ester blended fuel (COSME20) along with titanium oxide nano particles as an additive in biodiesel blends. The titanium oxide nanoparticles promote the combustion process that results in more oxidation of CO and reduces HC emission. The engine test was conducted with various blends of diesel and biodiesel with and without nanoparticles, namely B20 (20% biodiesel + 80% diesel), BN20 (20% biodiesel + 80% diesel + 20ppm), BN40 (20% biodiesel + 80% diesel + 40ppm) at different loads. The test results showed that the addition of titanium oxide nanoparticles in diesel and biodiesel blends improved combustion and reduced the exhaust gas emissions significantly.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 91069-91081 ◽  
Author(s):  
Mandeep Singh ◽  
Sarbjot Singh Sandhu

In this study, the performance and emission characteristics of diesel engine fueled with diesel/Argemone biodiesel blends have been evaluated.


Author(s):  
Shailendra Sinha ◽  
Avinash Kumar Agarwal

Over the past several years, there has been increased interest in alternative diesel fuels to control emissions and provide energy security. Biodiesel is a fuel that can be made from renewable biological sources such as vegetable oils and animal fats, has been recognized as an environment friendly alternative to mineral diesel. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transesterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized as per ASTM norms (ASTM D6751) and found comparable to diesel. Steady state engine dynamometer test at full throttle conditions have been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Engine was fuelled with various blends of rice-bran oil biodiesel (ROME) and mineral diesel ranging from 5% biodiesel to 100% biodiesel (5, 10, 20, 30, 50, and 100%). Performance and emission data were compared to the baseline data obtained using mineral diesel. Same engine without any hardware modification has been adopted for tests on all fuel blends. The results of this experimental investigation showed that biodiesel and biodiesel blends exhibited almost similar torque and power characteristics. Biodiesel blends up to 20% produced slightly higher torque and improved performance. Improvement in fuel conversion efficiency was found for lower concentration blends i.e. up to 20%. Lowest efficiency was found for 100% biodiesel blend. All the biodiesel blends emitted lower total hydrocarbon, carbon monoxide emissions and smoke opacity but slightly higher NOx emissions during the full throttle tests. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49) procedure. Drastic reduction in THC and CO and slight increase in NOx was observed.


Sign in / Sign up

Export Citation Format

Share Document