Experimental Investigation on the Performance and Emission Characteristics of Direct Injection Medium Duty Transport Diesel Engine Using Rice-Bran Oil Biodiesel

Author(s):  
Shailendra Sinha ◽  
Avinash Kumar Agarwal

Over the past several years, there has been increased interest in alternative diesel fuels to control emissions and provide energy security. Biodiesel is a fuel that can be made from renewable biological sources such as vegetable oils and animal fats, has been recognized as an environment friendly alternative to mineral diesel. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transesterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized as per ASTM norms (ASTM D6751) and found comparable to diesel. Steady state engine dynamometer test at full throttle conditions have been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Engine was fuelled with various blends of rice-bran oil biodiesel (ROME) and mineral diesel ranging from 5% biodiesel to 100% biodiesel (5, 10, 20, 30, 50, and 100%). Performance and emission data were compared to the baseline data obtained using mineral diesel. Same engine without any hardware modification has been adopted for tests on all fuel blends. The results of this experimental investigation showed that biodiesel and biodiesel blends exhibited almost similar torque and power characteristics. Biodiesel blends up to 20% produced slightly higher torque and improved performance. Improvement in fuel conversion efficiency was found for lower concentration blends i.e. up to 20%. Lowest efficiency was found for 100% biodiesel blend. All the biodiesel blends emitted lower total hydrocarbon, carbon monoxide emissions and smoke opacity but slightly higher NOx emissions during the full throttle tests. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49) procedure. Drastic reduction in THC and CO and slight increase in NOx was observed.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4578 ◽  
Author(s):  
Fayaz Hussain ◽  
Manzoore Elahi M. Soudagar ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
I.M. Rizwanul Fattah ◽  
...  

This study considered the impacts of diesel–soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics.


Author(s):  
A. Samuel Raja ◽  
G. Lakshmi Narayana Rao ◽  
N. Nallusamy ◽  
M. Selva Ganesh Kumar

The present work deals with the experimental investigations on the effect of refined rice bran oil and its blends with diesel on performance and emission characteristics of diesel engine with different combustion chamber geometry. The engine was tested with various neat vegetable oils and it was found that with refined rice bran oil the performance and emission characteristics were comparable with that of neat diesel. The K- factor of the combustion chamber geometry (ratio of the piston bowl volume to the clearance volume) was maintained at 0.74. The D/d ratio (ratio of piston crown diameter to piston bowl diameter) was altered to achieve re-entrant and torroidal shapes from spherical shape. Tests were carried out for each blend, with particular geometry of combustion chamber. Results with different combustion chamber geometry and different blends have been compared.


Sign in / Sign up

Export Citation Format

Share Document