Size effect in thermoelectric power factor of nondegenerate and degenerate low-dimensional semiconductors

2017 ◽  
Vol 4 (12) ◽  
pp. 12368-12373 ◽  
Author(s):  
Nguyen T. Hung ◽  
Ahmad R.T. Nugraha ◽  
Riichiro Saito
Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5350
Author(s):  
Damiano Archetti ◽  
Neophytos Neophytou

In this work we theoretically explore the effect of dimensionality on the thermoelectric power factor of indium arsenide (InA) nanowires by coupling atomistic tight-binding calculations to the Linearized Boltzmann transport formalism. We consider nanowires with diameters from 40 nm (bulk-like) down to 3 nm close to one-dimensional (1D), which allows for the proper exploration of the power factor within a unified large-scale atomistic description across a large diameter range. We find that as the diameter of the nanowires is reduced below d < 10 nm, the Seebeck coefficient increases substantially, as a consequence of strong subband quantization. Under phonon-limited scattering conditions, a considerable improvement of ~6× in the power factor is observed around d = 10 nm. The introduction of surface roughness scattering in the calculation reduces this power factor improvement to ~2×. As the diameter is decreased to d = 3 nm, the power factor is diminished. Our results show that, although low effective mass materials such as InAs can reach low-dimensional behavior at larger diameters and demonstrate significant thermoelectric power factor improvements, surface roughness is also stronger at larger diameters, which takes most of the anticipated power factor advantages away. However, the power factor improvement that can be observed around d = 10 nm could prove to be beneficial as both the Lorenz number and the phonon thermal conductivity are reduced at that diameter. Thus, this work, by using large-scale full-band simulations that span the corresponding length scales, clarifies properly the reasons behind power factor improvements (or degradations) in low-dimensional materials. The elaborate computational method presented can serve as a platform to develop similar schemes for two-dimensional (2D) and three-dimensional (3D) material electronic structures.


2016 ◽  
Vol 117 (3) ◽  
Author(s):  
Nguyen T. Hung ◽  
Eddwi H. Hasdeo ◽  
Ahmad R. T. Nugraha ◽  
Mildred S. Dresselhaus ◽  
Riichiro Saito

2021 ◽  
pp. 102493
Author(s):  
M.A. Gharavi ◽  
D. Gambino ◽  
A. le Febvrier ◽  
F. Eriksson ◽  
R. Armiento ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


2021 ◽  
Vol 721 ◽  
pp. 138537
Author(s):  
Anh Tuan Thanh Pham ◽  
Phuong Thanh Ngoc Vo ◽  
Hanh Kieu Thi Ta ◽  
Hoa Thi Lai ◽  
Vinh Cao Tran ◽  
...  

2015 ◽  
Vol 3 (40) ◽  
pp. 10500-10508 ◽  
Author(s):  
Xi Chen ◽  
Jianshi Zhou ◽  
John B. Goodenough ◽  
Li Shi

A rhenium-substituted HMS sample with small islands of MnSi secondary phase has been prepared by the quenching method. Such unique microstructure leads to an enhanced thermoelectric power factor (PF) as compared to the samples prepared by other methods.


2010 ◽  
Vol 434-435 ◽  
pp. 393-396 ◽  
Author(s):  
Ying Song ◽  
Qiu Sun ◽  
Li Rong Zhao ◽  
Fu Ping Wang

A series of polycrystalline (Ca1-xBix)3Co4O9 ( x = 0.0 ~ 0.075 ) powders were synthesized rapidly by a polyacrylamide gel method. The dense ceramics were fabricated using the spark plasma sintering ( SPS ) technique. Effects of Bi substitution on high temperature thermoelectric properties of Ca3Co4O9 were evaluated. Both the electrical conductivity and Seebeck coefficient increased with increasing Bi content up to x = 0.05, thus leading to an enhanced thermoelectric power factor. The Bi substituted sample with x = 0.05 obtained in this study has the highest thermoelectric power factor in the measured temperature range. It reaches 4.810-4 Wm-1K-2 at 700 °C, which is 26 % higher than that of Ca3Co4O9 without Bi substitution, and is by up to 15 % larger as compared to the Bi substituted sample synthesized by the solid state reaction method and the SPS technique due to the high chemical homogeneous powder prepared by the polyacrylamide gel method.


Sign in / Sign up

Export Citation Format

Share Document