Microstructural Characterization of Metastable Beta Titanium Alloys in Hot Rolled and Solution Treated condition

2018 ◽  
Vol 5 (2) ◽  
pp. 3657-3663
Author(s):  
Anubha Deshpande ◽  
Premkumar Manda ◽  
C. Vanitha ◽  
A.K. Singh
Alloy Digest ◽  
2004 ◽  
Vol 53 (7) ◽  

Abstract Allvac 38-644 is a metastable beta titanium alloy known for its ductility in the solution treated condition and its high strength and ductility in the solution treated and aged condition. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: TI-134. Producer or source: Allvac Metals Company.


Alloy Digest ◽  
1992 ◽  
Vol 41 (11) ◽  

Abstract TIMETAL 15-3 is a metastable beta titanium alloy that offers substantial weight reductions over other engineering materials. In the solution treated condition, it has excellent cold formability; in the aged condition, it has high strength. TIMETAL 15-3 is usually acceptable for use at temperatures up to 550 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on forming and heat treating. Filing Code: Ti-101. Producer or source: Titanium Metals Corporation (Timet).


JOM ◽  
2005 ◽  
Vol 57 (7) ◽  
pp. 5-5 ◽  
Author(s):  
J. I. Qazi ◽  
B. Marquardt ◽  
H. J. Rack

1979 ◽  
Vol 10 (1) ◽  
pp. 132-134 ◽  
Author(s):  
C. F. Yolton ◽  
F. H. Froes ◽  
R. F. Malone

1970 ◽  
Vol 34 (9) ◽  
pp. 949-957
Author(s):  
Shoichi Tokuda ◽  
Hiromichi Kawahara ◽  
Mitsuo Taniguchi ◽  
Yoshikatsu Tsumori

2021 ◽  
Vol 1016 ◽  
pp. 465-469
Author(s):  
Mohamed Abdel-Hady Gepreel ◽  
Mitsuo Niinomi

The development of new low-cost alloys composed of common elements that show high biocompatibility and mechanical properties matching with human bone is the target of many researches recently. Design and controlling the mechanical properties of newly developed set of Ti-xFe-3Zr-yNb (x=3-8 & y=2-3, at.%) low-cost alloys through applying different thermomechanical treatments is the aim of this work. Fe-content in the present designed alloys is changing in the range 3 to 8 at.%. The hardness and Young's modulus of the alloys were measured for the alloys in the solution treated, hot rolled and subsequent ageing at 400 °C and 550 °C. The phases separation and hence hardness of the aged alloys at 400 °C and 550 °C are highly dependent on the Fe-content in the alloy. The Young's modulus of the alloys is also changing with the Fe-content and heat treatment, where lowest modulus (~80GPa) is shown in the Ti-5Fe-3Zr-3Nb alloy in the solution treated condition.


Sign in / Sign up

Export Citation Format

Share Document