Application of Taguchi and Response Surface Methodology (RSM) in Steel Turning Process to Improve Surface Roughness and Material Removal Rate

2018 ◽  
Vol 5 (11) ◽  
pp. 24622-24631 ◽  
Author(s):  
K. Manikanda Prasath ◽  
T. Pradheep ◽  
S. Suresh
2007 ◽  
Vol 364-366 ◽  
pp. 733-738
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Chuan Shao Liu ◽  
Xun Sheng Zhu

Aimed at the precision machining characteristics of nano ZTA engineering ceramics external cylindrical components, ultrasonic aided lapping experiments were carried out adopting inhouse developed ultrasonic external cylindrical lapping device with solid abrasive material. To obtain minimum surface roughness with constraint of the material removal rate, response surface methodology (RSM) was adopted to analyze the experimental data, and suitable experiment design was chosen to fit the response surface in this research. Second-order surface response models of surface roughness and material removal rate were developed respectively, and the influence laws of lapping parameters on surface roughness and material removal rate were clarified according to the built models. Finally, parameters optimization of the ultrasonic external cylindrical lapping process for nano ZTA engineering ceramics was realized using surface response methodology.


2021 ◽  
Vol 49 (3) ◽  
pp. 756-763
Author(s):  
Kapil Gupta

This work presents the wire-EDM of WC-Co composite and optimization of process parameters using an integrated technique of response surface methodology (RSM), Vise Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) and artificial bee colony (ABC) algorithm to obtain the best set of machinability indicators. Wire feed (WF), servo voltage (SV), pulse off-time (Pon) and pulse on-time (Poff) are the variable process parameters, whereas root mean square roughness (Rq), average surface roughness (Ra) and material removal rate (MRR) are the machinability indicators considered in the present work. A total of twenty nine experiments have been conducted based on Box Behnken design (BBD) technique of response surface methodology. VIKOR has been used for normalization of responses and followed by solving empirical models using ABC algorithm to obtain optimized process parameters setting. WF-12 m/min, SV-65V, Pon-116 µs, Poff-20 µs are the optimum wire-EDM parameters obtained by intelligent RSM-VIKOR-ABC technique that produced best values of Ra-4.51 µm, Rq-5.64 µm, MRR-0.061 mm3 /min simultaneously. The validation test confirmed an improvement up to 15% in the response characteristics which proved the effectiveness of this novel hybrid technique for optimization. The optimum parameter setting is for ready industrial reference to attain best surface quality and process productivity for WC-Co composite machining by wire-EDM.


2014 ◽  
Vol 541-542 ◽  
pp. 354-358 ◽  
Author(s):  
C. Nandakumar ◽  
B. Mohan

This research deals with the multi-response optimization of CNC WEDM process parameters for machining titanium alloy Ti 6AI-4V using Response Surface Methodology (RSM) to achieve higher Material Removal Rate (MRR) and lower surface roughness (Ra). The process parameters of CNC WEDM namely pulse-on time (TON), pulse-off time (TOFF) and wire feed rate (WF) were optimized to study the responses in terms of material removal rate and surface roughness. The surface plot and the contour plots were generated between the process parameters and the responses using MINITAB software. The results show that the Response surface methodology (RSM) is a powerful tool for providing experimental diagrams and statistical-mathematical models to perform the experiments appropriately and economically.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Teepu Sultan ◽  
Anish Kumar ◽  
Rahul Dev Gupta

Electrical discharge machining is one of the earliest nontraditional machining, extensively used in industry for processing of parts having unusual profiles with reasonable precision. In the present work, an attempt has been made to model material removal rate, electrode wear rate, and surface roughness through response surface methodology in a die sinking EDM process. The optimization was performed in two steps using one factor at a time for preliminary evaluation and a Box-Behnken design involving three variables with three levels for determination of the critical experimental conditions. Pulse on time, pulse off time, and peak current were changed during the tests, while a copper electrode having tubular cross section was employed to machine through holes on EN 353 steel alloy workpiece. The results of analysis of variance indicated that the proposed mathematical models obtained can adequately describe the performances within the limits of factors being studied. The experimental and predicted values were in a good agreement. Surface topography is revealed with the help of scanning electron microscope micrographs.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
SHUBHRATA NAGPAL

In the present work, an attempt has been made for material removal rate and surface roughness by response surface optimization techniques in Electrical discharge machining. Electrical discharge machining, commonly known as EDM, is a process that is used to remove metal through the action of an electrical discharge of short duration and high current density between the work piece and too. This work presents the results of a mathematical investigation carried out to the effects of machining parameters such as current, pulse on time, pulse off time and lift time on material removal rate and surface roughness in electrical discharge machining of 17-4 PH steel by using copper electrode. Response surface methodology and ANOVA techniques are used for data analysis to solve the multi-response optimization. To validate the optimum levels of the parameter, confirmation run was performed by setting the parameters at optimum levels. Material Removal Rate during the process has been taken as productivity estimate with the objective to maximize it. With an intention of minimizing surface roughness is been considered as most important output parameter. It is found that the good agreement of that current is most significant parameter for material removal rate and less for surface roughness followed by pulse on time and lift time.


Sign in / Sign up

Export Citation Format

Share Document