Optimization of Process Parameters in Surface Finishing of Al6061 by using Magnetic Abrasive Finishing Process

2019 ◽  
Vol 18 ◽  
pp. 3365-3370
Author(s):  
D. Sai Chaitanya Kishore ◽  
S.M. Jameel Basha
Author(s):  
Prateek Kala ◽  
Pulak M Pandey

This article evaluates the finishing performance of ultrasonic-assisted double-disk magnetic abrasive finishing process on two paramagnetic materials (copper alloy and stainless steel) with different mechanical properties such as flow stress, hardness, shear modulus, and so on. The finishing experiments were performed based on response surface methodology. The results obtained after finishing have been analyzed to determine the effect of different process parameters such as working gap, rotational speed, and pulse-on time of ultrasonic vibration for both work materials and to study various interaction effects that may significantly affect the finishing performance by the process. The outcome of analysis for the two different work materials has been critically compared to understand the effect of the considered process parameters on the finishing performance of the process based on mechanical properties of the workpiece such as hardness. Furthermore, the scanning electron microscopy and atomic force microscopy were carried on the workpiece surface to understand the possible mechanism of material removal and the surface morphology produced after the finishing process.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


2011 ◽  
Vol 328-330 ◽  
pp. 868-880
Author(s):  
Fu Ming Chang ◽  
Tung Hsien Tsai ◽  
Sheng Han Chiang

This paper integrates machine center cutting process and magnetic abrasive finishing(MAF) producing a combined process that improves the magnetic abrasive loss rate(MALR) and roughness(Ra) of aluminum alloy 6061-T6 with ladder shape of different height. The present study shows the features of the development with mathematical model based on response surface methodology (RSM) for correlating the interactive and second order influences of major machining parameters such as different size and shape abrasive of stainless, spindle speed, tool and workpiece gap, feed speed, respectively. The experiments design, regression analysis and analysis of variance are used to develop the relationships between process parameters (abrasive size, spindle speed, tool and workpiece gap, feed speed) and responses (MALR and Ra) in MAF process. Sensitivity analysis has also been carried out using developed empirical equations. The results shows that developed mathematical models can be applied to estimate the effectiveness of process parameters for MALR and Ra with a change of spindle speed affects the MALR more strongly than Ra relatively compare to other parameters.


2004 ◽  
Vol 127 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Hitomi Yamaguchi ◽  
Takeo Shinmura ◽  
Megumi Sekine

This research studies the factors affecting the conditions required for successful uniform internal finishing of SUS304 stainless steel bent tube by a Magnetic abrasive finishing process. In particular, the effects of the magnetic field and ferrous particles were investigated. Local intensification of the magnetic field is accomplished by offsetting the axis of pole rotation from elbow axis. This effect enables local control of the material removal rate, which leads to uniformity in the finished surface regardless of the initial surface conditions. A two-phase finishing process controlling the size of the ferrous particles is proposed to achieve efficient fine surface finishing.


Sign in / Sign up

Export Citation Format

Share Document