Uniform Internal Finishing of SUS304 Stainless Steel Bent Tube Using a Magnetic Abrasive Finishing Process

2004 ◽  
Vol 127 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Hitomi Yamaguchi ◽  
Takeo Shinmura ◽  
Megumi Sekine

This research studies the factors affecting the conditions required for successful uniform internal finishing of SUS304 stainless steel bent tube by a Magnetic abrasive finishing process. In particular, the effects of the magnetic field and ferrous particles were investigated. Local intensification of the magnetic field is accomplished by offsetting the axis of pole rotation from elbow axis. This effect enables local control of the material removal rate, which leads to uniformity in the finished surface regardless of the initial surface conditions. A two-phase finishing process controlling the size of the ferrous particles is proposed to achieve efficient fine surface finishing.

Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Huijun Xie ◽  
Yanhua Zou

The magnetic abrasive finishing (MAF) process is an ultra-precision surface finishing process. In order to further improve the finishing efficiency and surface quality, the MAF process using an alternating magnetic field was proposed in the previous research, and it was proven that the alternating magnetic field has advantages compared with the static magnetic field. In order to further develop the process, this study investigated the effect on finishing characteristics when the alternating current waveform is a square wave. The difference between the fluctuation behavior of the magnetic cluster in two alternating magnetic fields (sine wave and square wave) is observed and analyzed. Through analysis, it can be concluded that the use of a square wave can make the magnetic cluster fluctuate faster, and as the size of the magnetic particles decreases, the difference between the magnetic cluster fluctuation speed of the two waveforms is greater. The experimental results show that the surface roughness of SUS304 stainless steel plate improves from 328 nm Ra to 14 nm Ra within 40 min.


Author(s):  
Hitomi Yamaguchi ◽  
Takeo Shinmura ◽  
Megumi Sekine

In the case of internal finishing of the bent section of a complex shaped tube, such as found in high purity fittings, by a magnetic abrasive finishing process, the magnetic field at the finishing area and, therefore, the finishing force are hardly uniform over the entire finishing area due to the geometry. This affects the abrasive behavior against the inner surface of the bent section, changing the finishing characteristics of SUS304 stainless steel fittings. In practice, non-uniformities in the surface finish remain at the bent section between the inside, outside, and lateral regions. This unevenness combines to cause difficulties in achieving uniform finishing. Magnetic abrasive is generally supplied with ferrous particles, and the ferrous particles experience greater magnetic force and play a role in pressing the magnetic abrasive against the target surface. This paper studies the finishing mechanism in view of the relationship between the magnetic field, the ferrous particles mixed with magnetic abrasive, and the finishing characteristics. The experiments identify the finishing conditions required for successfully diminishing the non-uniformity in the finished surface, and methods are recommended to satisfy the required conditions. The experiments using the proposed methods show the feasibility of producing a uniformly finished mirror surface.


ROTASI ◽  
2019 ◽  
Vol 20 (4) ◽  
pp. 249 ◽  
Author(s):  
Patrick Munyensanga ◽  
P. Paryanto ◽  
Moh Nor Ali Aziz

Advanced machining process telah terbukti dalam teknologi proses rekayasa untuk surface finishing dan proses material removal, atau dengan proses traditional finishing: fase fundamental, unrestrained, dan permintaan tinggi dalam fase tenaga kerja selama produksi. Finishing abrasif magnetik, pada polishing dalam proses non-konvensional mampu menyelesaikan dengan presisi dengan proses pemesinan yang dikontrol oleh medan magnet dan itu tidak berlaku untuk beberapa proses kompleks di mana teknik penyelesaian konvensional dapat dengan mudah diterapkan. Makalah ini mengulas teknik praktis untuk memoles bantalan AISI 316L ST Ball dengan proses finishing abrasif magnetik untuk menyelesaikan desain permukaan bola eksternal. Parameter input yang berbeda dari proses ditinjau seperti kecepatan elektromagnetik, arus dan tegangan langsung yang diinduksi, kepadatan fluks magnetik, jumlah ukuran partikel abrasif, lingkungan kerja, dan bahan benda kerja. Input yang terjadi untuk proses finishing bantalan bola stainless steel dapat memvalidasi kinerja laju material removal rate dan surface roughness.


2013 ◽  
Vol 579-580 ◽  
pp. 781-786
Author(s):  
Sheng Qiang Yang ◽  
Wen Hui Li ◽  
Hong Ling Chen ◽  
Jin Yu Guo

As a typical kind of surface finishing technology, magnetic abrasive finishing has unique advantages in finishing effect, efficiency and application, it occupies a very important position and has huge potential application value. As the core component of the magnetic abrasive finishing, the magnetic field formation components have a direct impact on the finishing effect and efficiency. Electro permanent magnetic field formation components used in magnetic abrasive finishing are put forward based on the characteristics of electro permanent magnet and its application in crane and clutch. Analyzing the main performance and characteristics of the magnetic filed formation components and determining the overall scheme according to the total requirements of magnetic filed formation components. Analyzing the feasibility of the electro permanent magnetic filed formation components through the simulation and then forming the design method to further promote the industrialization process of magnetic abrasive finishing.


2021 ◽  
Vol 1018 ◽  
pp. 111-116
Author(s):  
Yan Hua Zou ◽  
Hui Jun Xie

The traditional magnetic abrasive finishing (MAF) process, the magnetic flux density at the bottom of the magnetic pole is unevenly distributed, resulting in poor uniformity of the finished surface. Therefore, it is proposed to improve the surface quality by attaching a magnetic plate at the bottom of the workpiece to improve the magnetic field distribution. It is confirmed by simulation that the magnetic field distribution at the bottom of the magnetic pole is effectively improved after the magnetic plate is attached. It is proved through experiments that the magnetic plate-assisted MAF process can obtain a smoother surface. The experimental results show that the surface roughness of the glass lens improves from 246 nm Ra to 3 nm Ra through the magnetic plate-assisted MAF process within 45min.


2021 ◽  
Vol 1018 ◽  
pp. 105-110
Author(s):  
Jiang Nan Liu ◽  
Yan Hua Zou

In this study, mainly researching the improvement of roundness of thick SUS304 stainless steel tube by interior magnetic abrasive finishing using a magnetic machining jig. The influence of reciprocating velocity of magnetic pole unit on the improvement of roundness of interior surface was studied by establishing the dynamic equation of magnetic machining jig. Experimental results showed that low reciprocating velocity of magnetic pole unit is conducive to the improvement of interior roundness of the thick SUS304 stainless steel tube. The reason is that the low reciprocating velocity of magnetic pole unit reduces the pitch of the helical motion and can produce greater finishing force of the magnetic machining jig.


Sign in / Sign up

Export Citation Format

Share Document