scholarly journals Efficiency of flexural strengthening RC beams using fiber reinforced polymer materials

Author(s):  
Van-Tien Phan ◽  
Duy-Duan Nguyen
2016 ◽  
Vol 860 ◽  
pp. 156-159
Author(s):  
Seyha Yinh ◽  
Qudeer Hussain ◽  
Winyu Rattanapitikon ◽  
Amorn Pimanmas

This experimental study has been conducted on the efficiency of epoxy-bonded hemp fiber reinforced polymer (FRP) composites in flexural strengthening of reinforced concrete (RC) beams. A total of five RC beams were cast and tested up to failure. The test parameters included fiber thickness and strengthening configuration. The experimental results show the capability of hemp FRP composites to increase the loading capacity in flexure of RC beams compared with the un-strengthened beam. The enhancement of ultimate load becomes more significant as the fiber thickness is increased. The effectiveness of strengthened beams in U-wrapped scheme is found greater than strengthened beams in bottom-only scheme. Based on results, it indicates that hemp FRP has a potential to considerably increase the strength and stiffness of the original RC beam.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
N. Aravind ◽  
Amiya K. Samanta ◽  
Dilip Kr. Singha Roy ◽  
Joseph V. Thanikal

AbstractStrengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.


2017 ◽  
Vol 112 ◽  
pp. 125-136 ◽  
Author(s):  
Garyfalia G. Triantafyllou ◽  
Theodoros C. Rousakis ◽  
Athanasios I. Karabinis

Sign in / Sign up

Export Citation Format

Share Document