Flexural Behavior of Reinforced-Concrete (RC) Beams Strengthened with Hemp Fiber-Reinforced Polymer (FRP) Composites

2016 ◽  
Vol 860 ◽  
pp. 156-159
Author(s):  
Seyha Yinh ◽  
Qudeer Hussain ◽  
Winyu Rattanapitikon ◽  
Amorn Pimanmas

This experimental study has been conducted on the efficiency of epoxy-bonded hemp fiber reinforced polymer (FRP) composites in flexural strengthening of reinforced concrete (RC) beams. A total of five RC beams were cast and tested up to failure. The test parameters included fiber thickness and strengthening configuration. The experimental results show the capability of hemp FRP composites to increase the loading capacity in flexure of RC beams compared with the un-strengthened beam. The enhancement of ultimate load becomes more significant as the fiber thickness is increased. The effectiveness of strengthened beams in U-wrapped scheme is found greater than strengthened beams in bottom-only scheme. Based on results, it indicates that hemp FRP has a potential to considerably increase the strength and stiffness of the original RC beam.

2020 ◽  
pp. 136943322097478
Author(s):  
Abu Sayed Mohammad Akid ◽  
Qudrati Al Wasiew ◽  
Md. Habibur Rahman Sobuz ◽  
Touhidur Rahman ◽  
Vivian WY Tam

Fiber-reinforced polymer (FRP) is a revolutionary breakthrough in the history of structural engineering innovation due to its unique characteristics to strengthen and repair the deficient reinforced concrete structures. This paper aimed at evaluating the flexural characteristics of jute fiber reinforced polymer (JFRP) bonded reinforced concrete beams. The influence of the test variables comprised of strengthening scheme and corrosion rate for reinforced concrete (RC) beams. The experimental study comprised of casting six RC beams and testing them in flexure loading. To determine the flexural response of RC beams, three beams were fabricated with JFRP laminate having a level of corrosion of 0%, 7.5%, and 15%, whereas three beams were designated as control beams having same corrosion levels with no JFRP. Test results indicated that all JFRP strengthened beams exhibited increased ultimate load, yield load, first cracking load, and lower ductility index compared to control beams. The results also revealed that JFRP strengthening technique improved the flexural strength of the corroded beams efficiently, albeit the ultimate load of the beams diminished with higher corrosion level. Analytical calculations were carried out for quantifying the flexural characteristics and mass loss of beams which provided a good agreement with the test results.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
N. Aravind ◽  
Amiya K. Samanta ◽  
Dilip Kr. Singha Roy ◽  
Joseph V. Thanikal

AbstractStrengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.


Author(s):  
Nguyễn Thị Thanh ◽  
Phạm Việt Hùng ◽  
Ngô Quý Tuấn ◽  
Lê Minh Đức ◽  
Nguyễn Trường Giang

Phương pháp tăng cường khả năng chịu uốn của kết cấu sàn bê tông cốt thép sử dụng vật liệu tấm sợi FRP (Fiber Reinforced Polymer) dán ngoài đã trở nên phổ biến, vì những ưu điểm của chúng mang lại như cường độ chịu kéo cao, trọng lượng nhẹ, cách điện, cách nhiệt tốt, bền theo thời gian. Bài báo trình bày quy trình thiết kế tăng cường khả năng chịu uốn của sàn bê tông cốt thép gia cường bằng tấm sợi FRP dán ngoài để đảm bảo yêu cầu khai thác và khảo sát hiệu quả tăng cường tương ứng với các cấp cường độ chịu nén của bê tông theo hướng dẫn ACI 440.2R-17. Kết quả tính toán theo trình tự đề nghị giúp chọn và kiểm tra được diện tích tấm FRP tăng cường cần thiết. Ngoài ra, kết quả tính toán chỉ ra rằng mức độ tăng cường khả năng chịu uốn của sàn tỷ lệ thuận với cường độ chịu nén của bê tông, tương ứng với cường độ bê tông tăng từ 11,5 MPa đến 19,5 MPa, sức kháng uốn tính toán tăng từ 91%  đến 144%. Đồng thời, kết quả cũng cho thấy rằng sự phá hoại của sàn bê tông cốt thép xảy ra do mất dính bám giữa lớp FRP gia cường khỏi bề mặt cấu kiện là chủ yếu. ABSTRACT The method of the flexural strengthening of reinforced concrete slabs using the externally bonded FRP (fiber reinforced polymer) laminates has become popular because of their advantages as high tensile strength, large modulus of elasticity, lightweight, high abrasion resistance, electrical insulation, good heat resistance and durable over the time. The paper presented the design procedure for the flexural strengthening of reinforced concrete slabs with FRP laminates to ensure the mining requirements and investigation of the reinforcement efficiency corresponding to the compressive strength levels of concrete based on ACI 440.2R-17. Calculation results in the suggested sequence helped select and check the required reinforcement FRP areas. In addition, the calculation results showed that the degree of increased flexural strengthening of the slabs was proportional to the compressive strength of the concrete, corresponding to the concrete strength increased from 11,5 MPa to 19,5 MPa, flexural strengthening increases from 91% to 144%. Moreover, the damage to the reinforced concrete slabs was caused by the debonding between the FRP and the surface of the structures.


Sign in / Sign up

Export Citation Format

Share Document