Design of radio frequency integrated circuit for RF to DC power converter for bio-medical application

Author(s):  
D. Tamilarasi ◽  
P. Ramesh ◽  
Raja Krishnamoorthy ◽  
C. Bharatiraja ◽  
T. Jayasankar
Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


2021 ◽  
Vol 11 (13) ◽  
pp. 5793
Author(s):  
Bartosz Dominikowski

The accuracy of current measurements can be increased by appropriate amplification of the signal to within the measurement range. Accurate current measurement is important for energy monitoring and in power converter control systems. Resistance and inductive current transducers are used to measure the major current in AC/DC power converters. The output value of the current transducer depends on the load motor, and changes across the whole measurement range. Modern current measurement circuits are equipped with operational amplifiers with constant or programmable gain. These circuits are not able to measure small input currents with high resolution. This article proposes a precise loop gain system that can be implemented with various algorithms. Computer analysis of various automatic gain control (AGC) systems proved the effectiveness of the Mamdani controller, which was implemented in an MCU (microprocessor). The proposed fuzzy controller continuously determines the value of the conversion factor. The system also enables high resolution measurements of the current emitted from small electric loads (≥1 A) when the electric motor is stationary.


Author(s):  
Hong-xin Zhang ◽  
Jia Liu ◽  
Jun Xu ◽  
Fan Zhang ◽  
Xiao-tong Cui ◽  
...  

Abstract The electromagnetic radiation of electronic equipment carries information and can cause information leakage, which poses a serious threat to the security system; especially the information leakage caused by encryption or other important equipment will have more serious consequences. In the past decade or so, the attack technology and means for the physical layer have developed rapidly. And system designers have no effective method for this situation to eliminate or defend against threats with an absolute level of security. In recent years, device identification has been developed and improved as a physical-level technology to improve the security of integrated circuit (IC)-based multifactor authentication systems. Device identification tasks (including device identification and verification) are accomplished by monitoring and exploiting the characteristics of the IC’s unintentional electromagnetic radiation, without requiring any modification and process to hardware devices, thereby providing versatility and adapting existing hardware devices. Device identification based on deep residual networks and radio frequency is a technology applicable to the physical layer, which can improve the security of integrated circuit (IC)-based multifactor authentication systems. Device identification tasks (identification and verification) are accomplished by passively monitoring and utilizing the inherent properties of IC unintended RF transmissions without requiring any modifications to the analysis equipment. After the device performs a series of operations, the device is classified and identified using a deep residual neural network. The gradient descent method is used to adjust the network parameters, the batch training method is used to speed up the parameter tuning speed, the parameter regularization is used to improve the generalization, and finally, the Softmax classifier is used for classification. In the end, 28 chips of 4 models can be accurately identified into 4 categories, then the individual chips in each category can be identified, and finally 28 chips can be accurately identified, and the verification accuracy reached 100%. Therefore, the identification of radio frequency equipment based on deep residual network is very suitable as a countermeasure for implementing the device cloning technology and is expected to be related to various security issues.


Sign in / Sign up

Export Citation Format

Share Document