Pre-feasibility analysis and performance assessment of solar photovoltaic (PV) modules for the application of renewable power generation

Author(s):  
Pikaso Pal ◽  
Vivekananda Mukherjee ◽  
Pawan Kumar ◽  
Mamookho Elizabeth Makhatha
2021 ◽  
Author(s):  
Katharina Gruber ◽  
Luis Ramirez Camargo ◽  
Johannes Schmidt

<p>Climate data sets are widely used for renewable power simulation. While previous generations of global reanalysis data including MERRA-2 and ERA-Interim have been widely assessed for their suitability to simulate variable renewable power systems, more recent datasets such as ERA5 and ERA5-Land lack validation, particularly in regions outside of Europe.</p><p>Here, we assess the accuracy and bias of wind power simulation using ERA5 wind speeds in Brazil and New Zealand as well as solar photovoltaic power simulation accuracy using ERA5-Land solar radiation and temperature data in Chile. We compare the performance of ERA5 and ERA5-Land to MERRA-2 based renewable power generation. The reference data sets are capacity factors derived from data measured at individual installations in each country and the performance indicators include the pearson’s correlation coefficient, mean bias error (MBE) and root mean square error (RMSE). For wind power simulation, we also assess a bias correction method using the Global Wind Atlas.</p><p>Since models applying the resulting datasets are based on different spatial and temporal scales, we also aim at finding a relation between the spatial and temporal resolution and simulation quality. We assess the simulation results applying spatial aggregation ranging from individual installations to the country level and temporal aggregation varying from hours to months. This aids to evaluate the reliability of the simulated renewable power generation time series on various spatiotemporal scales for future simulation efforts.</p><p>Overall, we find that both datasets, ERA5 and ERA5-Land, perform well in wind and solar photovoltaic power simulations. For wind power simulation, ERA5 shows improved performance compared to MERRA-2 based wind power simulation, while for solar photovoltaic the improvements of ERA5-Land compared to MERRA-2 are minor. Correlation of wind power generation is around 0.8 without correction and MBEs around -0.1. Mean bias correction with the Global Wind Atlas does not consistently improve simulation results. For the solar photovoltaic power simulation, we find correlations above 0.75, while the MBE is between -0.05 and 0.1.</p>


Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


2018 ◽  
Vol 29 (4) ◽  
pp. e2785 ◽  
Author(s):  
Jitendra Kumar Tandekar ◽  
Amit Ojha ◽  
Souvik Das ◽  
Pankaj Swarnkar ◽  
Shailendra Jain

Sign in / Sign up

Export Citation Format

Share Document