Tris 2-aminoethyl amine (TREN) agent to quantify interaction and extraction capacity of VO2+ ions for oriented membrane processes

Author(s):  
I. Touarssi ◽  
S. Oukkass ◽  
Z. Habibi ◽  
Y. Chaouqi ◽  
N. Sefiani ◽  
...  
2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 574
Author(s):  
Claudia F. Galinha ◽  
João G. Crespo

Membrane processes are complex systems, often comprising several physicochemical phenomena, as well as biological reactions, depending on the systems studied. Therefore, process modelling is a requirement to simulate (and predict) process and membrane performance, to infer about optimal process conditions, to assess fouling development, and ultimately, for process monitoring and control. Despite the actual dissemination of terms such as Machine Learning, the use of such computational tools to model membrane processes was regarded by many in the past as not useful from a scientific point-of-view, not contributing to the understanding of the phenomena involved. Despite the controversy, in the last 25 years, data driven, non-mechanistic modelling is being applied to describe different membrane processes and in the development of new modelling and monitoring approaches. Thus, this work aims at providing a personal perspective of the use of non-mechanistic modelling in membrane processes, reviewing the evolution supported in our own experience, gained as research group working in the field of membrane processes. Additionally, some guidelines are provided for the application of advanced mathematical tools to model membrane processes.


Carbon ◽  
2021 ◽  
Author(s):  
Ziwen Yuan ◽  
Yanxi Yu ◽  
Xiao Sui ◽  
Yuanyuan Yao ◽  
Yuan Chen

2015 ◽  
Vol 43 ◽  
pp. 1343-1398 ◽  
Author(s):  
M.G. Buonomenna ◽  
J. Bae

2015 ◽  
Vol 3 (22) ◽  
pp. 12023-12030 ◽  
Author(s):  
Martin K. Dufficy ◽  
Saad A. Khan ◽  
Peter S. Fedkiw

The high Li-extraction capacity can be owed to the favorable interactions between silicon nanoparticles and the galactomannan binders.


Sign in / Sign up

Export Citation Format

Share Document