Topology optimization of lattice structure on a brake pedal

Author(s):  
Arun J. Kulangara ◽  
C.S.P. Rao ◽  
Jose Cherian
2020 ◽  
Vol 62 (6) ◽  
pp. 633-639 ◽  
Author(s):  
Büşra Aslan ◽  
Ali Rıza Yıldız

Abstract In today’s world, reducing fuel consumption is one of the most important goals for the automotive industry. For this reason, weight reduction is one of the main topics in this research and for various companies. In this research, topology optimization was conducted on a suspension arm as a means of ensuring balance in automobiles. Subsequently, the model, formed by topology optimization was filled with a lattice structure and re-optimized by size optimization to obtain optimum dimensions for the model. These operations are described as lattice structure optimization. Additive manufacturing (3D printer) is necessary to produce complex models (after topology and lattice structure optimization). A static analysis of the new models was conducted by using the finite element method, and the results were compared with those of the initial design of the model. As a result of the comparison, positive results were obtained, and it was shown that topology optimization and lattice structural optimization could be used in the design of vehicle elements. According to the results obtained from lattice structure optimization, design structure can be formed more reliably than via topology optimization. In addition, both configurations and layouts of the cellular structures have a special effect on the overall performance of the lattice structure.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Yuan Liu ◽  
Shurong Zhuo ◽  
Yining Xiao ◽  
Guolei Zheng ◽  
Guoying Dong ◽  
...  

Abstract Lightweight lattice structure generation and topology optimization (TO) are common design methodologies. In order to further improve potential structural stiffness of lattice structures, a method combining the multi-topology lattice structure design based on unit-cell library with topology optimization is proposed to optimize the parts. First, a parametric modeling method to rapidly generate a large number of different types of lattice cells is presented. Then, the unit-cell library and its property space are constructed by calculating the effective mechanical properties via a computational homogenization methodology. Third, the template of compromise Decision Support Problem (cDSP) is applied to generate the optimization formulation. The selective filling function of unit cells and geometric parameter computation algorithm are subsequently given to obtain the optimum lightweight lattice structure with uniformly varying densities across the design space. Lastly, for validation purposes, the effectiveness and robustness of the optimized results are analyzed through finite element analysis (FEA) simulation.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


Author(s):  
Tong Wu ◽  
Kai Liu ◽  
Andres Tovar

This work presents a design methodology of lightweight, thermally efficient injection molds with functionally graded lattice structure using multiphase thermomechanical topology optimization. The aim of this methodology is to increase or maintain thermal and mechanical performance as well as to lower the cost of thermomechanical components such as injection molds when these are fabricated using additive manufacturing technologies. The proposed design approach makes use of thermal and mechanical finite element analyses to evaluate the components stiffness and heat conduction in two length scales: mesoscale and macroscale. The mesoscale contains the structural features of the lattice unit cell. Mesoscale homogenized properties are implemented in the macroscale model, which contains the components boundary conditions including the external mechanical loads as well as the heat sources and heat sinks. The macroscale design problem addressed in this work is to find the optimal distribution of given number of lattice unit cell phases within the component so its mass is minimized, while satisfying stiffness and heat conduction constraints of the overall component and the specific regions. This problem is solved through two steps: conceptual design generation and multiphase material distribution. In the first step, the mass is minimized subject to constraints of mechanical compliance and thermal cost function. In the second step, a given number of lattice material are optimally distributed subjected to nonlinear thermal and mechanical constraints, e.g., maximum nodal temperature, maximum nodal displacement. The proposed design approach is demonstrated through 2D and 3D examples including the optimal design of the core of an injection mold. The results demonstrate that a small reduction in mechanical and thermal performance allows for significant mass savings: the second example shows that 3.5% heat conduction reduction and 8.7% stiffness reduction results in 30.3% mass reduction.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401985978
Author(s):  
Enrico Boccini ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
Enrico Meli ◽  
Alessandro Ridolfi ◽  
...  

Used in several industrial fields to create innovative designs, topology optimization is a method to design a structure characterized by maximum stiffness properties and reduced weights. By integrating topology optimization with additive layer manufacturing and, at the same time, by using innovative materials such as lattice structures, it is possible to realize complex three-dimensional geometries unthinkable using traditional subtractive techniques. Surprisingly, the extraordinary potential of topology optimization method (especially when coupled with additive manufacturing and lattice structures) has not yet been extensively developed to study rotating machines. Based on the above considerations, the applicability of topology optimization, additive manufacturing, and lattice structures to the fields of turbomachinery and rotordynamics is here explored. Such techniques are applied to a turbine disk to optimize its performance in terms of resonance and mass reduction. The obtained results are quite encouraging since this approach allows improving existing turbomachinery components’ performance when compared with traditional one.


2021 ◽  
Vol 1123 (1) ◽  
pp. 012035
Author(s):  
Tanmay Nandanwar ◽  
Keyour Waghela ◽  
Eshaan Gupta ◽  
T Narendiranath Babu

Author(s):  
Lin Cheng ◽  
Xuan Liang ◽  
Eric Belski ◽  
Xue Wang ◽  
Jennifer M. Sietins ◽  
...  

Additive manufacturing (AM) is now capable of fabricating geometrically complex geometries such as a variable-density lattice structure. This ability to handle geometric complexity provides the designer an opportunity to rethink the design method. In this work, a novel topology optimization algorithm is proposed to design variable-density lattice infill to maximize the first eigenfrequency of the structure. To make the method efficient, the lattice infill is treated as a continuum material with equivalent elastic properties obtained from asymptotic homogenization (AH), and the topology optimization is employed to find the optimum density distribution of the lattice structure. Specifically, the AH method is employed to calculate the effective mechanical properties of a predefined lattice structure as a function of its relative densities. Once the optimal density distribution is obtained, a continuous mapping technique is used to convert the optimal density distribution into variable-density lattice structured design. Two three-dimensional (3D) examples are used to validate the proposed method, where the designs are printed by the EOS direct metal laser sintering (DMLS) process in Ti6Al4V. Experimental results obtained from dynamical testing of the printed samples and detailed simulation results are in good agreement with the homogenized model results, which demonstrates the accuracy and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document