automobile components
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 35)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 3 (11) ◽  
Author(s):  
K. C. Nnakwo ◽  
F. O. Osakwe ◽  
B. C. Ugwuanyi ◽  
P. A. Oghenekowho ◽  
I. U. Okeke ◽  
...  

AbstractThe grain characteristics, electrical conductivity, hardness, and bulk density of Cu–3Si–(0.1—1 wt%)Zn alloys system fabricated by gravity casting technique were investigated experimentally using optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The study established the optimal alloy composition and the significance of zinc addition on the tested properties using response surface optimal design (RSOD). The cooled alloy samples underwent normalizing heat treatment at 900 °C for 0.5 h. The average grains size and grains distribution were analyzed using the linear intercept method (ImageJ). The microstructure examination revealed a change in grain characteristics (morphology and size) of the parent alloy by addition of 0.1 wt% zinc. The average grains size of the parent alloy decreased from 12 µm to 7.0 µm after 0.1 wt% zinc addition. This change in grain characteristics led to an increase in the hardness of the parent alloy by 42.2%, after adding 0.1 wt% zinc. The electrical conductivity of the parent alloy decreased from 46.3%IACS to 45.3%IACS, while the density was increased by 8.4% after adding 0.1 wt% zinc. The statistical data confirmed the significance of the change in properties. The result of optimization revealed Cu–3Si–0.233Zn as the optimal alloy composition with optimal properties. The Cu–3Si–xZn alloy demonstrated excellent properties suitable for the fabrication of electrical and automobile components.


Author(s):  
Radhika N. ◽  
M. Sam

Dry sliding performance of Cu-11Ni-4Si/10wt.%Al2O3 graded composite was investigated statistically and experimentally using pin-on-disc wear tester. Microstructural analysis revealed maximum gradient concentration of ceramics towards the inner radial wall of developed composite. The wear analysis was based on Taguchi’s L27 orthogonal array and Regression models, at tribo-parameters (load-15, 25, 35 N, slide velocity-1.5, 2.5, 3.5 m/s and slide distance-750, 1500, 1250 m). Wear raised with proportional rise in load and distance. Trend analysis of influential factors against wear response was studied using Analysis of Variance. The influence of process conditions and their interactions on the wear are also detailed. Worn surface analysis identified the formation of Mechanically Mixed Layers at intermediate velocity. This had a major influence over the improvement of wear resistance. This developed composite is suggestable for diverse automobile components of various tribology applications.


Author(s):  
Mr. Saurav Sariyal

The need for eco-friendly materials is increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offer various advantages over conventional materials such as environment friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and possess good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. This project aim is to development of a new hybrid natural composite made of Sisal and Kenaf for automobile application. Static analysis of specimen will be perform utilizing in ANSYS 19 software to determine force reaction for specified displacement with both composite materials along with stress concentration effect with deformation. Results and end will be drawn by looking at systematic and experimental esteems.


Author(s):  
Sahil Dhoka ◽  
Scott W. Wagner ◽  
Himansshu Abhi ◽  
Nicholas V. Hendrickson ◽  
William J. Emblom

Abstract Reducing fuel consumption has been a driving factor for researchers and manufacturers to continually develop improved methods for reducing the weight of automobiles or lightweighting. These vehicle lightweighting demands have directed researchers to look to using materials that are typically more difficult to manufacture in their studies. As a result, friction stir processing techniques are being looked at more closely. There are advantages to using friction stir methods. Dissimilar metals can be welded and fine-grained products can be created using friction stir methods to name a few. It can be an ideal solution for manufacturing high-conductive metals and alloys. Foamed aluminum tube similar to the one shown by Yoshiko Hangai et al [1] can be formed using the proposed process which could be used to develop lightweight automobile components. This paper provides preliminary results and insights gained when fine metal powders were used in a friction stir back extrusion (FSBE) setup. The tooling consisted of a D2 tool steel die with an H13 rotating probe mounted in a CNC mill. Within the die, commercially pure aluminum powder was topped by an aluminum cap with a milled pocket in the center. This pocket was used to locate the spin tool in the center of the cap and reduce the potential for the tool to drift and deflect. The cap was also used for compacting the powdered aluminum. X-ray diffraction indicated that Al13Fe4 was formed, indicating that the temperature within the die reached a minimum of 800°C and also indicated that the powder had the potential to partially sinter and melt.


2020 ◽  
Vol 0 (0) ◽  
pp. 1-42
Author(s):  
Jiajia Chen ◽  
Zeshui Xu ◽  
Xunjie Gou ◽  
Dongbin Huang ◽  
Jianchuan Zhang

Components procurement is a crucial process in supply chain management of the automobile industry. The problem is further complicated by imprecise information and discount policies provided by suppliers. This paper aims to develop a computational approach for assisting automobile components procurement with all-unit quantity discount policy and fuzzy factors, from potential suppliers offering different product portfolios. We propose a two-stage approach consisting of a DEA-TOPSIS (data envelopment analysis procedures followed with a technique for order preference by similarity to an ideal solution) approach for screening suppliers, and subsequentially a fuzzy mixed integer programming (FMIP) model with multiple objectives for optimizing order allocations. The DEA-TOPSIS approach integrates suppliers’ comparative performance and diversity performance into an overall index that improves the ranking of potential suppliers, while the FMIP model features a soft time-window in delivery punctuality and an all-unit quantity discount function in cost. By applying it in a case of automobile components procurement, we show that this two-stage approach effectively supports decision makers in yielding procurement plans for various components offered by many potential suppliers. This paper contributes to integrating multi-attribute decision analysis approach in the form of DEA crossevaluation with TOPSIS and FMIP model for supporting components procurement decisions.


2020 ◽  
Vol 62 (7) ◽  
pp. 744-748 ◽  
Author(s):  
A. B. S. Yıldız ◽  
N. Pholdee ◽  
S. Bureerat ◽  
A. R. Yıldız ◽  
S. M. Sait

Abstract In this paper, the sine-cosine optimization algorithm (SCO) is used to solve the shape optimization of a vehicle clutch lever. The design problem is posed for the shape optimization of a clutch lever with a mass objective function and a stress constraint. Actual function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm, and sine-cosine algorithm are used for shape optimization. The results show the ability of the sine-cosine optimization algorithm to optimize automobile components in the industry.


Sign in / Sign up

Export Citation Format

Share Document