Grey based multi-objective optimization of machining performance in boring of aluminium alloy 6061 through piezoelectric shunt damping

Author(s):  
Kamal Hassan ◽  
Amardeep Singh Kang ◽  
Chander Prakash ◽  
Gurraj Singh
2015 ◽  
Vol 761 ◽  
pp. 287-292
Author(s):  
Raja Izamshah ◽  
Zainudin Zuraidah ◽  
Mohd Shahir Kasim ◽  
M. Hadzley ◽  
M. Amran

Cellulose based hybrid composites are gaining popularity in the growing green communities. With extensive studies and increasing applications for future advancement, the need for an accurate and reliable guidance in machining this type of composites has increased enormously. Smooth and defect free machined surface are always the ultimate objectives. The present work deals with the study of machining parameters (i.e. spindle speed, feed rate and depth of cut) and their effects on machining performance (i.e. surface roughness and delamination) to establish an optimized setup of machining parameters in achieving multi objective machining performance. Cellulose based hybrid composites consist of jute (a bast fiber) and glass fiber embedded in polyester resins. Response Surface Methodology (RSM) using Box-Behnken Design (BBD) was chosen as the design of experiment approach for this study. Based on that experimental approach, 17 experimental runs were conducted. Mathematical model for each response was developed based on the experimental data. Adequacy of the models were analyzed statistically using Analysis of Variance (ANOVA) in determining the significant input variables and possible interactions. The multi objective optimization was performed through numerical optimization, and the predicted results were validated. The agreement between the experimental and selected solution was found to be strong, between 95% to 96%, thus validating the solution as the optimal machining condition. The findings suggest that feed rate was the main factor affecting surface roughness and delamination .


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3023 ◽  
Author(s):  
Adel T. Abbas ◽  
Faycal Benyahia ◽  
Magdy M. El Rayes ◽  
Catalin Pruncu ◽  
Mohamed A. Taha ◽  
...  

In this work, an extensive analysis has been presented and discussed to study the effectiveness of using different cooling and lubrication techniques when turning AISI 1045 steel. Three different approaches have been employed, namely dry, flood, and minimum quantity lubrication based nanofluid (MQL-nanofluid). In addition, three multi-objective optimization models have been employed to select the optimal cutting conditions. These cases include machining performance, sustainability effectiveness, and an integrated model which covers both machining outputs (i.e., surface roughness and power consumption) and sustainability aspects (carbon dioxide emissions and total machining cost). The results provided in this work offer a clear guideline to select the optimal cutting conditions based on different scenarios. It should be stated that MQL-nanofluid offered promising results through the three studied cases compared to dry and flood approaches. When considering both sustainability aspects and machining outputs, it is found that the optimal cutting conditions are cutting speed of 147 m/min, depth of cut of 0.28 mm and feed rate of 0.06 mm/rev using MQL-nanofluid. The three studied multi-objective optimization models obtained in this work provide flexibility to the decision maker(s) to select the appropriate cooling/lubrication strategy based on the desired objectives and targets, whether these targets are focused on machining performance, sustainability effectiveness, or both. Thus, this work offers a promising attempt in the open literature to optimize the machining process from the performance–sustainability point of view.


2018 ◽  
Vol 8 (1) ◽  
pp. 46-68 ◽  
Author(s):  
Shankar Chakraborty ◽  
Partha Protim Das ◽  
Vidyapati Kumar

Purpose The purpose of this paper is to exploit the fullest potential and capability of different non-traditional machining (NTM) processes, it is often recommended to operate them at their optimal parametric combinations. There are several mathematical tools and techniques that have been effectively deployed for identifying the optimal parametric mixes for the NTM processes. Amongst them, grey relational analysis (GRA) has become quite popular due to its sound mathematical basis, ease to implement and apprehensiveness for multi-objective optimization of NTM processes. Design/methodology/approach In this paper, GRA is integrated with fuzzy logic to present an efficient technique for multi-objective optimization of three NTM processes (i.e. abrasive water-jet machining, electrochemical machining and ultrasonic machining) while identifying their best parametric settings for enhanced machining performance. Findings The derived results are validated with respect to technique for order preference by similarity to ideal solution (TOPSIS), and analysis of variance is also performed so as to identify the most significant control parameters in the considered NTM processes. Practical implications This grey-fuzzy logic approach provides better parametric combinations for all the three NTM processes with respect to the predicted grey-fuzzy relational grades (GFRG). The developed surface plots help the process engineers to investigate the effects of various NTM process parameters on the predicted GFRG values. Originality/value The adopted approach can be applied to various machining (both conventional and non-conventional) processes for their parametric optimization for achieving better response values.


Sign in / Sign up

Export Citation Format

Share Document