scholarly journals Towards Optimization of Machining Performance and Sustainability Aspects when Turning AISI 1045 Steel under Different Cooling and Lubrication Strategies

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3023 ◽  
Author(s):  
Adel T. Abbas ◽  
Faycal Benyahia ◽  
Magdy M. El Rayes ◽  
Catalin Pruncu ◽  
Mohamed A. Taha ◽  
...  

In this work, an extensive analysis has been presented and discussed to study the effectiveness of using different cooling and lubrication techniques when turning AISI 1045 steel. Three different approaches have been employed, namely dry, flood, and minimum quantity lubrication based nanofluid (MQL-nanofluid). In addition, three multi-objective optimization models have been employed to select the optimal cutting conditions. These cases include machining performance, sustainability effectiveness, and an integrated model which covers both machining outputs (i.e., surface roughness and power consumption) and sustainability aspects (carbon dioxide emissions and total machining cost). The results provided in this work offer a clear guideline to select the optimal cutting conditions based on different scenarios. It should be stated that MQL-nanofluid offered promising results through the three studied cases compared to dry and flood approaches. When considering both sustainability aspects and machining outputs, it is found that the optimal cutting conditions are cutting speed of 147 m/min, depth of cut of 0.28 mm and feed rate of 0.06 mm/rev using MQL-nanofluid. The three studied multi-objective optimization models obtained in this work provide flexibility to the decision maker(s) to select the appropriate cooling/lubrication strategy based on the desired objectives and targets, whether these targets are focused on machining performance, sustainability effectiveness, or both. Thus, this work offers a promising attempt in the open literature to optimize the machining process from the performance–sustainability point of view.

Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.


2013 ◽  
Vol 589-590 ◽  
pp. 134-139
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

A method for building the constitutive relationship based on the J-C model and hardness is presented through considering the influence of hardness on the yield strength and the tensile strength. A constitutive relationship of hardened AISI 1045 is built by this method and the adiabatic shear critical cutting conditions of three kinds of hardness AISI 1045 steel are prediction through a model building by the linear pertubation analysis which considering the influence of compression stress of the primary shear zone, the cutting conditions and the constitutive relationship. For proving the prediction results, some orthogonal cutting experiments are performed to get the critical cutting conditions of adiabatic shear. The comparison shows that the prediction results are consistent with that of experiments.


2019 ◽  
Vol 8 (2) ◽  
pp. 1462-1465 ◽  

The nature of residual stresses caused by machining processes has been relevant to the study of component performance for decades. The concept that cutting parameters affect the magnitude and nature of residual stress is well known. In order to reduce the residual stresses on a machined surface, it is important to identify the extent of the effect of cutting conditions. This paper presents the effect of depth of cut and tool speed on milling induced residual stresses. Speed and depth of cut were varied when milling several AISI 1045 Steel specimens. Stresses were measured with the X-ray diffraction method and corroborated with mathematical modelling on an FEA software. A relationship between tool speed and residual stress, and depth of cut and residual stress was thus obtained.


Author(s):  
Anshu D. Jayal ◽  
A. K. Balaji

The use of Cutting Fluids (CFs) in machining operations is being increasingly questioned in recent years for environmental and economic reasons, leading to efforts in promoting dry, as well as minimal quantity of lubricant (MQL), machining. However, the tribological effectiveness and thermal aspects of CF action at modern cutting conditions, which not only involve relatively high cutting speeds but also advanced tool coatings and chip-breaking geometric features, need better understanding. This paper presents an experimental investigation into the effects of different CF application methods on various machining performance measures while cutting with commercially available flat-faced, as well as grooved, uncoated and coated cemented tungsten carbide tools. CF effects under dry, flood, and MQL conditions, were gauged through their influence on cutting forces, tool temperatures, tool-chip interfacial contact, and chip morphology during machining of AISI 1045 steel. The results show new trends on the individual cooling and lubricating effects of CF application methods, and the effects of their interactions with the tool coatings and the presence/absence of chip-breaking grooves.


Author(s):  
J. Ma ◽  
Nick H. Duong ◽  
Shuting Lei

This paper investigates the performance of microbump textured cutting tool in dry orthogonal machining of mild steel (AISI 1045 steel) using AdvantEdge finite element simulation. Microbumps are designed on the rake face of cemented carbide (WC/Co) cutting inserts. The purpose is to examine the effect of microbump textured tools on machining performance and to compare it with non-textured regular cutting tools. Specifically, the following microbump parameters are examined: microbump width, microbump height, and edge distance (the distance from cutting edge to the first microbump). Their effects are assessed in terms of the main force, thrust force, and chip-tool contact length. It is found that microbump textured cutting tools generate lower cutting force and thrust force and consequently lower the energy consumption for machining. The micobump width, microbump height, and edge distance all have influence on cutting force in their own ways.


Author(s):  
N. Suresh Kumar Reddy ◽  
P. Venkateswara Rao

Coolants dissipate the heat generated during machining and hence improve productivity, machinability, etc. However, the use of cutting fluids in machining operations may seriously degrade the quality of environment. So, in recent years researchers have started machining with the use of solid lubricants with the aim of improving machining performance and overcome some of the limitations that arise with the use of cutting fluids or while machining dry. This paper deals with an investigation on using graphite as a solid lubricant to reduce the heat generated at the milling zone for improving the surface roughness of the machined AISI 1045 steel. An experimental setup has been developed to maintain constant flow rate of graphite powder continuously on to the workpiece and tool interface zone. The experimental studies have been conducted to see the effect of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on the machining response such as surface finish in solid lubricant assisted machining using four fluted solid TiAlN coated carbide cutters. Results indicate that there is a considerable improvement in the performance of milling AISI 1045 steel using graphite as a solid lubricant when compared with machining with cutting fluids. An attempt has also been made to select optimum tool geometry and cutting conditions in end milling with graphite as a solid lubricant by using the prediction model obtained from these experimental results.


Author(s):  
Mohammad Lotfi ◽  
Saeid Amini

Applying ultrasonic vibrations in machining process is an effective method to improve desired machinability factors. In this study, a three-dimensional finite element model is developed to evaluate effect of added vibratory movement of cutting tool on output parameters in conventional drilling of AISI 1045 steel. Heat generation on drill faces, strain, and damage of deformed chip in addition to thrust force are taken into account to be analyzed. Besides, a dynamometer and a vision measuring microscope are used to investigate generated thrust force and built-up edge during conventional and ultrasonic-assisted drilling. As a result, it is shown that vibratory movement of drill bit results in lower temperature to be generated on tool faces resulting in almost elimination of built-up edge. Moreover, higher damage value resulted by additional chip bending is observed when ultrasonic vibration is added to the operation.


Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of AISI 1045 steel based on a true metallo-thermo-mechanical coupled analysis. A metallo-thermo-mechanical coupled material model is developed, and a finite element model is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using ABAQUS. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7° to 5°. A good agreement is achieved in chip formation, cutting force and cutting temperature between the model predictions and the experimental data.


Sign in / Sign up

Export Citation Format

Share Document