Effect of humidified intake air on a turbo-charged DICI engine: Performance and emission analysis

Author(s):  
Thummaluru Yogeeswara ◽  
A. Kalaisselvane
2015 ◽  
Vol 787 ◽  
pp. 751-755
Author(s):  
P. Vithya ◽  
V. Logesh

The use of fossil fuel is increasing drastically due to its consumption in all consumer activities. The utility of fossil fuel depleted its existence, degraded the environment and led to reduction in underground carbon resources. Hence the search for alternative fuels is paying attention for making sustainable development, energy conservation, efficiency and environmental preservation. The worldwide reduction of underground carbon resources can be substituted by the bio-fuels. The researchers around the world are finding the alternate fuel that should have the least impact on the environment degradation. This paper aims at finding an alternative for diesel and reducing the pressure on its existing demand. This study aimed at using two types of oil mixtures namely cashew nut shell oil and camphor oil mixed with diesel, turpentine oil mixed with diesel in different proportions as fuel in twin cylinder four stroke diesel engine. Performance and emission analysis have been performed by using exhaust gas analyzer in the oil samples. It was observed that 40% cashew nut shell oil and 10%camphor oil mixed with 50% diesel, 50% turpentine oil mixed with 50% diesel shows the better engine performance and also less emissions.


Author(s):  
Shyamsundar Rajaraman ◽  
G. K. Yashwanth ◽  
T. Rajan ◽  
R. Siva Kumaran ◽  
P. Raghu

World at present is confronted with the twin crisis of fossil fuel depletion and environmental pollution. Rapid escalation in prices and hydrocarbon resources depletion has led us to look for alternative fuels, which can satisfy ever increasing demands of energy as well as protect the environment from noxious pollutants. In this direction an attempt has been made to study a biodiesel, namely Moringa Oil Methyl Esters [MOME]. All the experiments were carried out on a 4.4 kW naturally aspirated stationary direct injection diesel engine coupled with a dynamometer to determine the engine performance and emission analysis for MOME. It was observed that there was a reduction in HC, CO and PM emissions along with a substantial increase in NOx. MOME and its blends had slightly lower thermal efficiency than diesel oil.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Mayank Kapoor ◽  
Narendra Kumar ◽  
Ajay Singh Verma ◽  
Gaurav Gautam ◽  
Aditya Kumar Padap

Abstract This paper depicts Box-Behnken design (BBD) approach to optimize the performance and emission characteristics of adjustable compression ratio, single- cylinder diesel engine with nanoparticle-blended biofuel. Cerium oxide (CeO2) nanoparticles and diethyl ether (DEE) are mixed with neem methyl ester (NME) in corresponding ratios as per BBD experimental plan. Engine performance characteristics brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and NOx, CO, HC, and CO2 emissions have been analyzed. To study the influence of input parameters, quadratic models are developed on each output response using analysis of variance (ANOVA). Desirability function approach has been used to optimize the performance of multi-response parameters. The results revealed that nanoparticles mixed blends of NME and DEE enhances the performance characteristics and reduce the harmful emissions.


Author(s):  
Fatima Mohammed Ghanim ◽  
Ali Mohammed Hamdan Adam ◽  
Hazir Farouk

Abstract: There is growing interest to study the effect of blending various oxygenated additives with diesel or biodiesel fuel on engine performance and emission characteristics. This study aims to analyze the performance and exhaust emission of a four-stroke, four-cylinder diesel engine fueled with biodiesel-ethanol-diesel. Biodiesel was first produced from crude Jatropha oil, and then it was blended with ethanol and fossil diesel in different blend ratios (B10E10D80, B12.5E12.5D75, B15E15D70, B20E20D60 and B25E25D50). The engine performance and emission characteristics were studied at engine speeds ranging from 1200 to 2000 rpm. The results show that the brake specific fuel consumption increases while the brake power decreases as the percentage of biodiesel and ethanol increases in the blend. The exhaust emission analysis shows a reduction in CO2 emission and increase in NOx emission when the biodiesel -to- ethanol ratio increases in the blends, when compared with diesel as a reference fuel.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097415
Author(s):  
Muhammad Bilal Khan ◽  
Ali Hussain Kazim ◽  
Aqsa Shabbir ◽  
Muhammad Farooq ◽  
Haroon Farooq ◽  
...  

Biodiesel, a biodegradable, highly oxygenated and renewable energy resource, is produced by esterification of vegetable oils. This work focuses on using electrolytic separation and emulsification to produce purer biodiesel having high cetane index of 61.4. Vegetable oil mixture is used as feedstock. Maximum production yield is 84%. The decrease in engine peak torque was minimum for B5 at 1.94% while maximum decrease was for B20. B5 show a slight increase in power while B20 and B50 show significant drop. For all test speeds, B50 shows higher efficiency than all test fuels however the BSFC was significantly higher than diesel until 88.8% of the maximum engine speed. The maximum increase in brake thermal efficiency for B5 is found to be 2.09% which is 7.9% more than diesel at 2000 rpm. A significant increase of maximum 3.719% in brake specific fuel consumption (BSFC) is observed. Maximum reduction in CO emissions is 53.3% for B50 at 2250 rpm accompanied with a maximum average drop in HCs of 74.4%. The variation in the NOx is insignificant. B5 is found to be the most effective blend for both maintaining the engine performance and improving the engine emissions.


Biofuels ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 201-206 ◽  
Author(s):  
N. Panneerselvam ◽  
A. Murugesan ◽  
K.P. Porkodi ◽  
Terefe Jima ◽  
C. Vijayakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document