Piezo stepping actuator design with macrometer range and sub micrometer precision

Author(s):  
R.K. Veeresha ◽  
Mohammed Hasan Azmal ◽  
Muralidhara
Keyword(s):  
Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 62
Author(s):  
Ilia Uvarov ◽  
Pavel Shlepakov ◽  
Artem Melenev ◽  
Kechun Ma ◽  
Vitaly Svetovoy ◽  
...  

Microfluidic devices providing an accurate delivery of fluids at required rates are of considerable interest, especially for the biomedical field. The progress is limited by the lack of micropumps, which are compact, have high performance, and are compatible with standard microfabrication. This paper describes a micropump based on a new driving principle. The pump contains three membrane actuators operating peristaltically. The actuators are driven by nanobubbles of hydrogen and oxygen, which are generated in the chamber by a series of short voltage pulses of alternating polarity applied to the electrodes. This process guaranties the response time of the actuators to be much shorter than that of any other electrochemical device. The main part of the pump has a size of about 3 mm, which is an order of magnitude smaller in comparison with conventional micropumps. The pump is fabricated in glass and silicon wafers using standard cleanroom processes. The channels are formed in SU-8 photoresist and the membrane is made of SiNx. The channels are sealed by two processes of bonding between SU-8 and SiNx. Functionality of the channels and membranes is demonstrated. A defect of electrodes related to the lift-off fabrication procedure did not allow a demonstration of the pumping process although a flow rate of 1.5 µl/min and dosage accuracy of 0.25 nl are expected. The working characteristics of the pump make it attractive for the use in portable drug delivery systems, but the fabrication technology must be improved.


2016 ◽  
Vol 11 (4) ◽  
pp. 046003 ◽  
Author(s):  
Maziar Ahmad Sharbafi ◽  
Christian Rode ◽  
Stefan Kurowski ◽  
Dorian Scholz ◽  
Rico Möckel ◽  
...  
Keyword(s):  

1999 ◽  
Author(s):  
R. Ye ◽  
J. H. Ding ◽  
H. S. Tzou

Abstract Recent development of smart structures and structronic systems has demonstrated the technology in many engineering applications. Active structural control of aircraft wings or helicopter blades (e.g., shapes, flaps, leading and/or trailing edges) can significantly enhance the aerodynamic efficiency and flight maneuverability of high-performance airplanes and helicopters. This paper in to evaluate the dual bending and torsion vibration control effects of an X-actuator configuration reconfigured from a parallel configuration. Finite element (FE) formation of a new FE using the layerwise constant shear angle theory is reviewed and the derived governing equations are discussed. Bending and torsion control effects of plates are studied using the FE method and also demonstrated via laboratory experiments. FE and experimental results both suggest the X-actuator is effective to both bending and torsion control of plates.


Author(s):  
Sven Herold ◽  
William Kaal ◽  
Tobias Melz

In order to realize dielectric elastomer stack actuators suitable for dynamic applications a new actuator design with rigid, perforated electrodes is developed. The low surface resistance of the metal electrodes predestines this concept for dynamic applications where higher currents are present. Detailed numerical analyses are performed to show the potential of this approach, to study the complex material deformation and to optimize the aperture geometry. A multilayer stack actuator is then manufactured and characterized experimentally under various load conditions to gain suitable parameters for a parametrized model. It is subsequently used to attenuate vibrations of a truss structure. By careful adjusting the parameters it functions both as passive absober and as actuator. A comparison of experimental and simulation results proves the high quality of the simulation model. The work shows the great potential of the new design concept for future applications especially in the field of smart structures.


Author(s):  
Erich Schmidt ◽  
Wolfgang Paradeiser ◽  
Fadi Dohnal ◽  
Horst Ecker

PurposeAn overview is given on design features, numerical modelling and testing of a novel electromagnetic actuator to achieve a controllable stiffness to be used as a device for parametric stiffness excitation.Design/methodology/approachIn principle, the actuator consists of a current driven coil placed between two permanent magnets. Repellent forces are generated between the coil and the magnets, centering the coil between the two magnets. The 2D finite element analyses are carried out to predict the forces generated by this arrangement depending on coil current and coil position. Force measurements are also made using the actual device.FindingsActuator forces as predicted by the finite element analyses are in excellent agreement with the measured data, confirming the validity of the numerical model. Stiffness of the actuator is defined as the increase of force per unit of coil displacement. Actuator stiffness depends linearly on the coil current but in a nonlinear manner on the coil displacement. The performance of the actuator is sufficient to demonstrate the effect of a so‐called parametric anti‐resonance on a test stand.Research limitations/implicationsAlthough the performance of the actuator is satisfactory, there is potential for further improvement of the actuator design.Originality/valueThis paper reports for the first time on an electromechanical device to create a time‐periodic stiffness variation to be used for research in the field of parametrically excited mechanical systems. The device is used to prove experimentally an effect to suppress mechanical vibrations which has been studied so far only in theoretical studies.


Author(s):  
Arnaldo Gomes Leal Junior ◽  
Rafhael Milanezi de Andrade ◽  
Antonio Bento Filho

Vestnik LSTU ◽  
2021 ◽  
pp. 23-30
Author(s):  
Yuri Mikhailovich Krylov ◽  
Alexander Alexandrovich Agapov ◽  
Alexander Mikhailovich Litvinenko ◽  
Nikolay Sergeevich Antonov

Sign in / Sign up

Export Citation Format

Share Document