scholarly journals Series Elastic Actuator: Design, Analysis and Comparison

Author(s):  
Arnaldo Gomes Leal Junior ◽  
Rafhael Milanezi de Andrade ◽  
Antonio Bento Filho

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Brian T. Knox ◽  
James P. Schmiedeler

This paper presents a novel series-elastic actuator (SEA) design that uses a spiral torsion spring to achieve drivetrain compliance in a compact and efficient mechanism. The SEA utilizes electromechanical actuation and is designed for use in the experimental biped robot KURMET for investigating dynamic maneuvers. Similar to helical torsion springs, spiral torsion springs are particularly applicable for legged robots because they preserve the rotational motion inherent in electric motors and articulated leg joints, but with less drivetrain backlash and unwanted coil interaction under load than helical torsion springs. The general spiral torsion spring design equations are presented in a form convenient for robot design, along with a detailed discussion of the mechanism surrounding the spring. Also, the SEA mechanism has a set of unidirectional hardstops that further improves the position control by allowing series-elasticity in only one rotational direction.



Author(s):  
Raghuraj J. Chauhan ◽  
Pinhas Ben-Tzvi

Abstract This paper presents the design of a series elastic actuator and a higher level controller for said actuator to assist the motion of a user’s hand in a linkage based hand exoskeleton. While recent trends in the development of exoskeleton gloves has been to exploit the advantages of soft actuators, their size and power requirements limit their adoption. On the other hand, a series elastic actuator can provide compliant assistance to the wearer while remaining compact and lightweight. Furthermore, the linkage based mechanism integrated with the SEA offers repeatability and accuracy to the hand exoskeleton. By measuring the user’s motion intention through compression of the elastic elements in the actuator, a virtual dynamic system can be utilized that assists the users in performing the desired motion while ensuring the motion stability of the overall system. This work describes the detailed design of the actuator followed by performance tests using a simple PD controller on the integrated robotic exoskeleton prototype. The performance of the proposed high level controller is tested using the integrated exoskeleton glove mechanism for a single finger, using two types of input motion. Preliminary results are discussed as well as plans for integrating the proposed actuator and high level controller into a complete hand exoskeleton prototype to perform intelligent grasping.



2019 ◽  
Vol 14 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Jinuk Bang ◽  
◽  
Minsik Choi ◽  
Donghyung Lee ◽  
Jungho Park ◽  
...  


2020 ◽  
Vol 140 (5) ◽  
pp. 378-386
Author(s):  
Toshiya Nakamura ◽  
Daisuke Yashiro ◽  
Kazuhiro Yubai ◽  
Satoshi Komada


2021 ◽  
pp. 095745652110307
Author(s):  
Kangping Gao ◽  
Xinxin Xu ◽  
Ning Shi ◽  
Shengjie Jiao

In the process of drilling and coring by the rock-breaking rig, the drill rod is affected by the intermittent impact force, which reduces the efficiency of the rig to break the rock and increases the cost of the drilling and coring. Therefore, it is very important to improve the impact resistance of the drill pipe during the rock-breaking process. To achieve this goal, a flexible design of the drill pipe was carried out, and a dynamical model of the drilling rig based on a series elastic actuator was established. Considering the dynamic performance of the system, a torque feedforward link is introduced and a control model based on the force source is established. The influence of the equivalent inertia of the transmission system and the series elastic actuator damping coefficient on the system stability was analyzed by drawing the frequency domain characteristic curve of the system. By using the control and Simulink simulation software, the electromechanical simulation of the model is carried out, and the torque step tracking response of the system is obtained. A torque feedforward link is introduced to establish the control model of the system based on force source. Through dynamic simulation software ADAMS, dynamic and static impact simulation experiments were carried out on the system. The results show that when a force of 200 N is applied to the output end of the drill pipe in the tangential direction, the maximum moments received by the joint under static and dynamic environments are 34.1 N·m and 57.9 N·m, respectively. When the impact force disappears, the time required for the flexible drill pipe to reach a stable state is only 0.15 s, which verifies that the series elastic actuator–based drill pipe model can alleviate the impact of the external environment and protect the internal structure of the rig.



Sign in / Sign up

Export Citation Format

Share Document