scholarly journals Uniformity evaluation of lattice spacing of silicon crystals for the realization of the kilogram

2021 ◽  
Vol 18 ◽  
pp. 100204
Author(s):  
Atsushi Waseda ◽  
Xiao Wei Zhang
1998 ◽  
Vol 536 ◽  
Author(s):  
V. P. Popov ◽  
A. K. Gutakovsky ◽  
I. V. Antonova ◽  
K. S. Zhuravlev ◽  
E. V. Spesivtsev ◽  
...  

AbstractA study of Si:H layers formed by high dose hydrogen implantation (up to 3x107cm-2) using pulsed beams with mean currents up 40 mA/cm2 was carried out in the present work. The Rutherford backscattering spectrometry (RBS), channeling of He ions, and transmission electron microscopy (TEM) were used to study the implanted silicon, and to identify the structural defects (a-Si islands and nanocrystallites). Implantation regimes used in this work lead to creation of the layers, which contain hydrogen concentrations higher than 15 at.% as well as the high defect concentrations. As a result, the nano- and microcavities that are created in the silicon fill with hydrogen. Annealing of this silicon removes the radiation defects and leads to a nanocrystalline structure of implanted layer. A strong energy dependence of dechanneling, connected with formation of quasi nanocrystallites, which have mutual small angle disorientation (<1.50), was found after moderate annealing in the range 200-500°C. The nanocrystalline regions are in the range of 2-4 nm were estimated on the basis of the suggested dechanneling model and transmission electron microscopy (TEM) measurements. Correlation between spectroscopic ellipsometry, visible photoluminescence, and sizes of nanocrystallites in hydrogenated nc-Si:H is observed.


1981 ◽  
Vol 55 (2) ◽  
pp. 406-408 ◽  
Author(s):  
N. De Leon ◽  
J. Guldberg ◽  
J. Salling

2018 ◽  
Vol 175 ◽  
pp. 13008 ◽  
Author(s):  
Yuzhi Liu ◽  
Jon A. Bailey ◽  
A. Bazavov ◽  
C. Bernard ◽  
C. M. Bouchard ◽  
...  

Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0 and f+ for the semileptonic Bs → Kℓv decay. A total of six ensembles with lattice spacing from ≈ 0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass m’l is one-tenth the strange quark mass m’s. At the intermediate lattice spacing, the ratio m’l/m’s ranges from 0.05 to 0.2. The valence b quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element |Vub|.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
A. Mazzolari ◽  
M. Romagnoni ◽  
E. Bagli ◽  
L. Bandiera ◽  
S. Baricordi ◽  
...  

2001 ◽  
Vol 319-321 ◽  
pp. 683-686 ◽  
Author(s):  
K Higashida ◽  
T Kawamura ◽  
T Morikawa ◽  
Y Miura ◽  
N Narita ◽  
...  
Keyword(s):  

2001 ◽  
Vol 56 (12) ◽  
pp. 869-872
Author(s):  
B. Baranowski ◽  
A. Lundén

Abstract The metastability of some phases of CsHSO4 and RbH2PO4 is due to the volume decrease at an endothermic phase transition which "locks in" the metastability in question. Water adsorption, which removes these metastabilities, probably exerts a "wedge-like" force which expands the lattice spacing in the surface layer, thus facilitating the start of the phase transition. The induction time and the zeroth order kinetics of the transition in RbH2PO4 are exponential functions of the water activity applied.


Sign in / Sign up

Export Citation Format

Share Document