Channeling, Volume Reflection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals - General Abstract

2015 ◽  
Author(s):  
Brandon Benson
2019 ◽  
Vol 34 (34) ◽  
pp. 1943006
Author(s):  
U. Wienands ◽  
S. Gessner ◽  
M. J. Hogan ◽  
T. Markiewicz ◽  
T. Smith ◽  
...  

Since 2014, a SLAC-Aarhus-Ferrara-CalPoly collaboration augmented by members of ANL and MIT has performed electron and positron channeling experiments using bent silicon crystals at the SLAC End Station A Test Beam as well as the FACET accelerator test facility. These experiments have revealed a remarkable channeling efficiency of about 24% under our conditions. Volume reflection is even more efficient with almost the whole beam taking part in the reflection process. A positron experiment demonstrated quasi-channeling oscillations for the first time at high beam energy. In our most recent experiment we measured the spectrum of gamma radiation for crystal orientations covering channeling and volume reflection. This series of experiments supports the development of more advanced crystalline devices capable e.g. of producing narrow-band gamma rays with electron beams or studying the interaction of the electrons with the wakefields generated in the crystal at high beam intensity.


2009 ◽  
Vol 102 (8) ◽  
Author(s):  
W. Scandale ◽  
A. Vomiero ◽  
S. Baricordi ◽  
P. Dalpiaz ◽  
M. Fiorini ◽  
...  

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Guilherme Soares Zahn ◽  
Regina Beck Ticianelli ◽  
Mitiko Saiki ◽  
Frederico Antonio Genezini

In IPEN’s Neutron Activation Laboratory (LAN/IPEN), thin stainless steel sample holders are used for gamma spectrometry in NAA measurements. This material is very practical, but its chemical composition may be troublesome, as it presents large amounts of elements with intermediate atomic number, with attenuation factors for low-energy gamma-rays that must not be neglected. In this study, count rates obtained using different sample holders were compared. To accomplish that, an Am-241 source, with 59-keV gamma emission, was used so that low-energy gamma attenuation differences can be determined. Moreover, in order to study the energy dependence of these differences, a Ho-166m source was also used. From these results, it was possible to analyze the experimental error associated to the variations between sample holders, with the aim of introducing an addictive term to the uncertainty analysis of comparative Neutron Activation Analysis results.


1998 ◽  
Vol 536 ◽  
Author(s):  
V. P. Popov ◽  
A. K. Gutakovsky ◽  
I. V. Antonova ◽  
K. S. Zhuravlev ◽  
E. V. Spesivtsev ◽  
...  

AbstractA study of Si:H layers formed by high dose hydrogen implantation (up to 3x107cm-2) using pulsed beams with mean currents up 40 mA/cm2 was carried out in the present work. The Rutherford backscattering spectrometry (RBS), channeling of He ions, and transmission electron microscopy (TEM) were used to study the implanted silicon, and to identify the structural defects (a-Si islands and nanocrystallites). Implantation regimes used in this work lead to creation of the layers, which contain hydrogen concentrations higher than 15 at.% as well as the high defect concentrations. As a result, the nano- and microcavities that are created in the silicon fill with hydrogen. Annealing of this silicon removes the radiation defects and leads to a nanocrystalline structure of implanted layer. A strong energy dependence of dechanneling, connected with formation of quasi nanocrystallites, which have mutual small angle disorientation (<1.50), was found after moderate annealing in the range 200-500°C. The nanocrystalline regions are in the range of 2-4 nm were estimated on the basis of the suggested dechanneling model and transmission electron microscopy (TEM) measurements. Correlation between spectroscopic ellipsometry, visible photoluminescence, and sizes of nanocrystallites in hydrogenated nc-Si:H is observed.


Sign in / Sign up

Export Citation Format

Share Document