Measurement of water flow rate in microchannels based on the microfluidic particle image velocimetry

Measurement ◽  
2009 ◽  
Vol 42 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Haoli Wang ◽  
Yuan Wang
Author(s):  
Raju Murugan ◽  
Dhanalakshmi Sellan ◽  
Pankaj S. Kolhe

Abstract Two-fluid flow blurring atomization is characterized by the backflow recirculation of the air phase in the liquid pipe by bifurcation of the liquid and airflow. Most of the primary spray process is completed in the injector due to the penetration of air into the liquid tube. Thus, the majority of the liquid ligaments are converted into a fine spray at the outlet of the nozzle. Experiments were performed with two different air to liquid ratios (0.6 and 1) by mass, where water is considered as the liquid and airflow was kept constant (0.2 g/s). To change the ALR, the liquid flow rate was changed. Particle image velocimetry (PIV) diagnostic technique provides the full-field velocity of the spray droplets (discrete phase). It may be noted that sprays are self-seeded and PIV measurements reflect the droplet velocities instead of air velocity. To understand the effect of the spatial resolution of PIV on spray droplet velocity; experiments were conducted at three different spatial resolutions (11.8, 16.4 and 23.22 μm/pixel) for each ALR. As the ALR is increased, the mass of the liquid in the spray decreases, resulting in finer atomization and velocity of the spray droplets. This means that finer droplets are generated for the same mass of air at a lower liquid flow rate as compared to higher liquid flow rate. Note that Reynolds stresses provide an indication of the turbulent breakup of the droplet and larger magnitudes observed for higher ALR indicate finer atomization.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Kevin Tallio ◽  
Keith Miazgowicz ◽  
...  

Abstract The flow field at the inlet of a turbocharger compressor has been studied through stereoscopic particle image velocimetry (SPIV) experiments under different operating conditions. It is found that the flow field is quite uniform at high mass flow rates; but as the mass flow rate is reduced, flow reversal from the impeller is observed as an annular ring at the periphery of the inlet duct. The inception of flow reversal is observed to occur in the mid-flow operating region, near peak efficiency, and corresponds to an incidence angle of about 15.5 deg at the inducer blade tips at all tested speeds. This reversed flow region is marked with high tangential velocity and rapid fluctuations. It grows in strength with reducing mass flow rate and imparts some of its angular momentum to the forward flow due to mixing. The penetration depth of the reversed flow upstream from the inducer plane is found to increase quadratically with decreasing flow rate.


Author(s):  
Han Xu ◽  
Donghai Jin ◽  
Dakun Sun ◽  
Lin Du ◽  
Xingmin Gui ◽  
...  

In this paper, the effect of the rotor–stator axial spacing is investigated in an axial pump with the working fluid of water. The pressure-rise performance was tested at a range of flow rates. Results indicate that decreased axial spacing generates improved hydraulic head, especially when the flow rate is low. Particle image velocimetry measurement was performed and flow fields for five rotor phases were obtained in a low flow rate condition. Particle image velocimetry results demonstrate that the stator inlet flow is both affected by the wake of the rotor and the existence of the stator. As the axial spacing gets close, the incidence angle of the stator decreases and the flow separation on the suction side is restrained, and therefore the pressure rise ability is improved.


Author(s):  
G. Valentino ◽  
M. Auriemma ◽  
G. Caputo ◽  
F. E. Corcione

The present paper aims at providing experimental results on the spray structure and its interaction with the air flow generated by the intake ducts of a commercial light duty gasoline direct injection (GDI) engine head. The investigation was carried out by the Particle Image Velocimetry (PIV) technique to investigate the air flow and fuel droplets velocity evolution within a prototype cylinder with optical accesses. Experiments were carried out at various operating conditions reproducing the mixture preparation for an early injection strategy. The PIV technique was applied in a flow test rig assembled with a blower, which supplied the intake flow rate, connected to the intake manifold of a commercial 4-valve direct injection gasoline engine head modified to lay down an external driving control system for the valves motion. Experiments were taken equipping the engine head with a common rail injection system able to work up to 10 MPa, and a swirled type injector having a nozzle diameter of 0.50 mm and a nominal cone angle of 60°. Tests were taken, on a plane crossing the cylinder and the injector axes, supplying to the prototype cylinder an intake flow rate of 29 m3/h and spraying the gasoline at two injection timings in a range of injection pressure of 6, 8, and 10 MPa. The results provided detailed information on the intake flow field behavior and the evolution of fuel jet within the air flow. The intake flow velocity distribution, acquired at different cam angle during the induction, showed the development of an initial clockwise tumble flow with a tendency to produce two large flow structures: a main counter clockwise vortex and a clockwise ones located at the opposite side of the field of view. Images of the interaction of the fuel with the tumble motion displayed, firstly, a fuel jet shape that traveled not affected by the tumble motion because of its high momentum. Later during the intake, the fuel was strongly distorted by the air motion with the formation of clusters detached from the main jet and spread within the cylinder so allowing to hypothesize that the intake bulk flow may be a crucial parameter to control the fuel penetration and the droplets distribution within the cylinder.


2012 ◽  
Vol 16 (5) ◽  
pp. 1414-1418 ◽  
Author(s):  
Xiao-Yu Liang ◽  
Huan-Huan Wu ◽  
Cheng-Xu Tu ◽  
Kai Zhang

The visualization measurement of internal flow field in a curved expansion duct is experimentally studied using particle image velocimetry technology and the influence of flow rate on flow field is analyzed. The streamline distribution and related performance curve in the internal flow field can be figured out through further analysis of experiment data. The results show that fiber orientation is mainly affected by velocity gradient, the fibers near the wall are aligned with the flow direction more quickly than the fibers in intermediate region, and the fibers near the concave wall are more quickly aligned with the flow direction than the convex wall. The larger inlet flow rate which will accordingly lead to increase inlet velocity enables the more quick adaptation and steady of fibers in flow direction.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Grant W. Rowlands ◽  
Bryan C. Good ◽  
Steven Deutsch ◽  
Keefe B. Manning

Ventricular assist devices (VADs) are implanted in patients with a diseased ventricle to maintain peripheral perfusion as a bridge-to-transplant or as destination therapy. However, some patients with continuous flow VADs (e.g., HeartMate II (HMII)) have experienced gastrointestinal (GI) bleeding, in part caused by the proteolytic cleavage or mechanical destruction of von Willebrand factor (vWF), a clotting glycoprotein. in vitro studies were performed to measure the flow located within the HMII outlet cannula under both steady and physiological conditions using particle image velocimetry (PIV). Under steady flow, a mock flow loop was used with the HMII producing a flow rate of 3.2 L/min. The physiological experiment included a pulsatile pump operated at 105 BPM with a ventricle filling volume of 50 mL and in conjunction with the HMII producing a total flow rate of 5.0 L/min. Velocity fields, Reynolds normal stresses (RNSs), and Reynolds shear stresses (RSSs) were analyzed to quantify the outlet flow's potential contribution to vWF degradation. Under both flow conditions, the HMII generated principal Reynolds stresses that are, at times, orders of magnitude higher than those needed to unfurl vWF, potentially impacting its physiological function. Under steady flow, principal RNSs were calculated to be approximately 500 Pa in the outlet cannula. Elevated Reynolds stresses were observed throughout every phase of the cardiac cycle under physiological flow with principal RNSs approaching 1500 Pa during peak systole. Prolonged exposure to these conditions may lead to acquired von Willebrand syndrome (AvWS), which is accompanied by uncontrollable bleeding episodes.


Sign in / Sign up

Export Citation Format

Share Document