Experimental validation of non-contacting measurement method using LED-optical displacement sensors for vibration stress of small-bore piping

Measurement ◽  
2015 ◽  
Vol 71 ◽  
pp. 1-10 ◽  
Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi ◽  
Takashi Tsuji ◽  
Michiyasu Noda
Author(s):  
Akira Maekawa ◽  
Tsuneo Takahashi ◽  
Takashi Tsuji ◽  
Michiyasu Noda

In nuclear power plants, vibration stress of piping is frequently measured to prevent the occurrence of fatigue failure. A simpler and more efficient measurement method is desired for rapid integrity evaluation of piping. In this study, a method to measure vibration stress in a noncontact manner using optical displacement sensors is presented and validated. The proposed method estimates vibration-induced stress of small-bore piping directly using noncontact sensors based on a light-emission diode. First, the noncontact measurement method was proposed, and the measurement instrument based on the proposed method was developed for the validation. Next, vibration measurement experiments using the instrument were conducted for a mock-up piping system and an actual piping system. The measurement results were compared with the values measured by the conventional method of known accuracy using strain gauges. From this comparison, the proposed noncontact measurement method was demonstrated to be able to provide sufficient accuracy for practical use.


2015 ◽  
Vol 81 (831) ◽  
pp. 15-00195-15-00195 ◽  
Author(s):  
Akira MAEKAWA ◽  
Michiyasu NODA ◽  
Masanori SHINTANI ◽  
Michiaki SUZUKI

Author(s):  
Akira Maekawa ◽  
Takashi Tsuji ◽  
Tsuneo Takahashi

The present paper proposes an efficient contactless measurement method for vibration stress of piping systems, by which the measurement tasks are performed within an extremely short time and the measured stress can be evaluated immediately after the measurement. The proposed method includes two processes, in which the bending shape of a pipe induced by vibration response is identified by a transmission-type optical displacement sensor and the vibration stress is calculated based on beam theory using the curvature radius estimated by approximating the bending shape. The proposed method uses only one LED-optical sensor to measure the vibration stress though multiple sensors must be used in the previous method developed by the authors. Therefore, the measuring system could be reduced in size and a light-weight and portable measurement instrument was developed. The measurement accuracy and reliability of the new method were verified by the vibration experiment using a mock-up piping system.


2018 ◽  
Vol 157 ◽  
pp. 05023
Author(s):  
Martyna Zowade ◽  
Maciej Bodnicki

The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.


2006 ◽  
Vol 505-507 ◽  
pp. 349-354
Author(s):  
Yeh Fen Fu ◽  
Lih Horng Shyu ◽  
Y.T. Chen ◽  
Wen Yuh Jywe ◽  
C.H. Liu

A new optical encoder system is presented for displacement measurement by the curve fitting method. In this paper, another pondering model is based on the previous development. That is the new measurement method using a homemade periodical gray level code, which can be used to replace the traditional doublet grating. A high precision is achieved by a fitting method with one single-frequency harmonic function. The experiment result shows that the concept is feasible.


Author(s):  
Vladimir Chapsky ◽  
Vladimir Portman ◽  
Ben-Zion Sandler

A novel design of high isotropy single mass six-degree-of-freedom (6-DOF) accelerometer has been developed and investigated. In the accelerometer, six spatial coordinates (three linear and three angular) of the inertial mass and their derivatives are observed by simple measurement of linear displacements of six optimally chosen points of the inertial mass. Calculation of the six acceleration components is then possible according to a specially developed mathematical algorithm. To provide the isotropy of the device’s sensitivity and to achieve the accuracy in the measurement of the linear and angular accelerations, three subsystems of the device — inertial, suspension, and measurement subsystems — have a spatially symmetrical structure. To provide the symmetrical structure of the inertial subsystem, the proof mass is manufactured from uniform material and has a cubic shape. All structural cavities in this cube (light guides and a light source cavity) are symmetrical relative to three coordinate axes. To provide the symmetry of suspension subsystem 24 elastic supports (springs) are mounted by three in all vertexes of the cube in the directions of X-, Y- and Z-axes. The springs have the same dimensions and stiffness. The damping elements (the rubber insets) are inserted into the springs. They are made of the same material and have the identical dimension. The measurement subsystem consists of six differential optical displacement sensors and the light source which is mounted in the center of the cube. Each optical sensor is based on three-component position-sensitive detectors (PSD) of a segmented type. This design ensures output signals that are independent of fluctuations in light source brightness and of optical and electromagnetic interferences. Optical sensors are mounted on the frame of the accelerometer and situated symmetrically opposite to the centers of the square faces of the cube. Six orts of measurement directions form three orthogonal pairs. The experimental model of isotropic 6-DOF accelerometer with differential optical measurement subsystem is manufactured, adjusted and tested. For this purpose the experimental apparatus consisting of the stand with standard accelerometers and computer-controlled data gathering and analysis system (multi-channel amplifier, analog-digital converter and LabView software system) is developed. The preliminary experiment results show that proposed device has high level of signal isotropy and it is hoped to have a good perspective for industrial application were it can replace the complex gyroscopic and combined multi-axis devices.


Sign in / Sign up

Export Citation Format

Share Document