contactless measurement
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 61)

H-INDEX

17
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 627
Author(s):  
Fan Yang ◽  
Shan He ◽  
Siddharth Sadanand ◽  
Aroon Yusuf ◽  
Miodrag Bolic

In this study, a contactless vital signs monitoring system was proposed, which can measure body temperature (BT), heart rate (HR) and respiration rate (RR) for people with and without face masks using a thermal and an RGB camera. The convolution neural network (CNN) based face detector was applied and three regions of interest (ROIs) were located based on facial landmarks for vital sign estimation. Ten healthy subjects from a variety of ethnic backgrounds with skin colors from pale white to darker brown participated in several different experiments. The absolute error (AE) between the estimated HR using the proposed method and the reference HR from all experiments is 2.70±2.28 beats/min (mean ± std), and the AE between the estimated RR and the reference RR from all experiments is 1.47±1.33 breaths/min (mean ± std) at a distance of 0.6–1.2 m.


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 32-46
Author(s):  
Yurii Podchashynskyi ◽  
Oksana Luhovykh ◽  
Vitaliy Tsyporenko ◽  
Valentyn Tsyporenko

The method and structural scheme of an information-measuring system for determining the parameters of objects' movements (technological equipment in the quarry for extracting block natural stone) have been proposed. A distinctive feature of time video sequences containing images of measured objects is their adaptation and adjustment in accordance with the intensity of movement and accuracy requirements for measurement results. Structural and software-algorithmic methods were also applied for improving the accuracy of measurements of motion parameters, namely: complexation of two measuring channels and exponential smoothing of digital references. One of the measuring channels is based on a digital video camera, the second is based on an accelerometer mounted on an object and two integrators. Exponential smoothing makes it possible to take into consideration the previous countdowns of movement parameters with weight coefficients. That ensures accounting for the existing patterns of movement of the object and reducing the errors when measuring the parameters of movement by (1.4...1.6) times. The resulting solutions have been implemented in the form of an information and measurement system. The technological process of extracting blocks of natural stone in the quarry was experimentally investigated using a diamond-rope installation. Based on the contactless measurement of motion parameters, it is possible to ensure control over this process and improve the quality of blocks made of natural stone. Based on the experimental study of measurement errors, recommendations were given for the selection of adaptive parameters of a video sequence, namely the size of images and the value of the inter-frame interval. In addition, methods for the software-algorithmic processing of measuring information were selected, specifically exponential smoothing and averaging the coordinates of the contour of an object, measured in 30 adjacent lines of the image


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8393
Author(s):  
Matthias Franz Rath ◽  
Bernhard Schweighofer ◽  
Hannes Wegleiter

The strain in a fast spinning carbon fiber flywheel rotor is of great interest for condition monitoring, as well as for studying long-term aging effects in the carbon fiber matrix. Optoelectronic strain measurement is a contactless measurement principle where a special reflective pattern is applied to the rotor which is scanned by a stationary optical setup. It does not require any active electronic components on the rotor and is suited for operation in a vacuum. In this paper, the influences of the key parts comprising the optoelectronic strain measurement are analyzed. The influence of each part on the measurement result including the uncertainty is modeled. The total uncertainty, as well as each part’s contribution is calculated. This provides a valuable assessment of requirements for component selection, as well as tolerances of mechanical parts and processes to reach a final target measurement uncertainty or to estimate the uncertainty of a given setup. We have shown that the edge quality of the special reflective pattern has the strongest influence, and how to improve it. Considering all influences, it is possible to measure strain with an uncertainty of less than 1% at a rotation speed of 500Hz.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2805
Author(s):  
Ibrahim Kakouche ◽  
Hamza Abadlia ◽  
Mohammed Nabil El Korso ◽  
Ammar Mesloub ◽  
Abdelmadjid Maali ◽  
...  

Respiration rate monitoring using ultra-wideband (UWB) radar is preferred because it provides contactless measurement without restricting the person’s privacy. This study considers a novel non-contact-based solution using a single-input multiple-output (SIMO) UWB impulse radar. In the proposed system, the collected radar data are converted to several narrow-band signals using the generalized Goertzel algorithm (GGA), which are used as the input of the designed phased arrays for position estimation. In this context, we introduce the incoherent signal subspace methods (ISSM) for the direction of arrivals (DOAs) and distance evaluation. Meanwhile, a beam focusing approach is used to determine each individual and estimate their breathing rate automatically based on a linearly constrained minimum variance (LCMV) beamformer. The experimental results prove that the proposed algorithm can achieve high estimation accuracy in a variety of test environments, with an error of 2%, 5%, and 2% for DOA, distance, and respiration rate, respectively.


2021 ◽  
Vol 11 (20) ◽  
pp. 9545
Author(s):  
Friederike Jensen ◽  
Marina Terlau ◽  
Michael Sorg ◽  
Andreas Fischer

Initial defects, for example, those occurring during the production of a rotor blade, encourage early damages such as rain erosion at the leading edge of wind turbine rotor blades. To investigate the potential that initial defects have for early damage, long-pulse thermography as a non-destructive and contactless measurement technique is applied to a strongly curved and coated test specimen for the first time. This specimen is similar in structural size and design to a rotor blade leading edge and introduced with sub-surface defects whose diameters range between 2mm and 3.5mm at depths between 1.5mm and 2.5mm below the surface. On the curved and coated test specimen, sub-surface defects with a depth-to-diameter ratio of up to 1.04 are successfully detected. In particular, defects are also detectable when being observed from a non-perpendicular viewing angle, where the intensity of the defects decreases with increasing viewing angle due to the strong surface curvature. In conclusion, long-pulse thermography is suitable for the detection of sub-surface defects on coated and curved components and is therefore a promising technique for the on-site application during inspection of rotor blade leading edges.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6779
Author(s):  
Rymantas Jonas Kažys ◽  
Olgirdas Tumšys

Ultrasonic guided waves are already used for material characterization. The advantage of these waves is that they propagate in the plane of a plate and their propagation characteristics are sensitive to properties of the material. The objective of this research was to develop an ultrasonic method that could be used to measure the properties of thin plastic polyvinylchloride films (PVC). The proposed method exploits two fundamental Lamb wave modes, A0 and S0, for measurement of a thin film thickness and Young’s modulus. The Young’s modulus is found from the measured phased velocity of the S0 mode and the film thickness from the velocities of both A0 and S0 modes. By using the proposed semi-contactless measurement algorithm, the Young’s modulus and thickness of different thickness (150 µm and 200 µm) PVC films were measured. The uncertainty of thickness measurements of the thinner 150 µm PVC film is 2% and the thicker 200 µm PVC film is 3.9%.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6553
Author(s):  
Niloofar Fallahi Chegeni ◽  
Parto Ijadi Maghsoodi ◽  
Mahsa Habibi ◽  
Hossein Zare-Behtash ◽  
Mohammad Hossein Majles Ara ◽  
...  

Dissolved-oxygen concentration and temperature are amongst the crucial parameters required for the precise monitoring of biological and biomedical systems. A novel hybrid nanocomposite probe for real-time and contactless measurement of both dissolved-oxygen concentration and temperature, based on a combination of downconverting phosphorescent molecules of platinum octaethylporphyrin and lanthanide-doped upconverting nanoparticles immobilized in a host of polystyrene, is here introduced. Chlorella algae are employed here as a model to demonstrate the hybrid nanophotonic sensor’s capability to monitor the aforementioned two parameters during the photosynthesis process, since these are among the parameters impacting their production efficiency. These algae have attracted tremendous interest due to their potential to be used for diverse applications such as biofuel production; however, feasibility studies on their economic production are still underway.


2021 ◽  

In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements. Moreover, these same techniques could also allow to characterize the tire behavior in operating conditions, which would be practically impossible to derive with standard techniques. In this paper we will demonstrate how non-contact full-field measurement techniques can be used to reliably and robustly characterize the tire behavior up to 300 Hz, focusing on static conditions. Experimental modal analysis will extract the modal characteristic of the tire in both free-free and statically preloaded boundary conditions, using both DIC and LDV. The extracted natural frequencies, damping ratios and full-field mode shapes will be used on one side to improve the accuracy of tire models (either by deriving FRF based models or updating FE ones) but also as a reference for future investigation on the tire behavior characterization in rotating conditions.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5535
Author(s):  
Marc Berger ◽  
Anne Zygmanowski ◽  
Stefan Zimmermann

Certain applications require a contactless measurement to eliminate the risk of sensor-induced sample contamination. Examples can be found in chemical process control, biotechnology or medical technology. For instance, in critically ill patients requiring renal replacement therapy, continuous in-line monitoring of blood conductivity as a measure for sodium should be considered. A differential inductive sensing system based on a differential transformer using a specific flow chamber has already proven suitable for this application. However, since the blood in renal replacement therapy is carried in plastic tubing, a direct measurement through the tubing offers a contactless method. Therefore, in this work we present a differential transformer for measuring directly through electrically non-conductive tubing by winding the tube around the ferrite core of the transformer. Here, the dependence of the winding type and the number of turns of the tubing on the sensitivity has been analyzed by using a mathematical model, simulations and experimental validation. A maximum sensitivity of 364.9 mV/mol/L is measured for radial winding around the core. A longitudinal winding turns out to be less effective with 92.8 mV/mol/L. However, the findings prove the ability to use the differential transformer as a truly contactless sensing system.


Sign in / Sign up

Export Citation Format

Share Document