scholarly journals Characteristics of shunting effect in resistance spot welding in mild steel based on electrode displacement

Measurement ◽  
2018 ◽  
Vol 115 ◽  
pp. 233-242 ◽  
Author(s):  
Bobin Xing ◽  
Yi Xiao ◽  
Qing H. Qin
2004 ◽  
Vol 126 (3) ◽  
pp. 605-610 ◽  
Author(s):  
C. T. Ji, ◽  
Y. Zhou,

Dynamic electrode displacement and force were characterized during resistance spot welding of aluminum alloy 5182 sheets using a medium-frequency direct-current welder. It was found that both electrode displacement and force increased rapidly at the beginning of the welding stage and then at a reducing rate. Rates of increase in electrode displacement and force were both proportional to welding current. And both electrode displacement and force experienced a sudden drop when weld metal expulsion occurred. However, the rate of increase in electrode displacement did not reach zero during welding even for joints with sufficient nugget diameter, while electrode force peaked when a large nugget diameter was produced. Possible strategies for process monitoring and control were also discussed.


Author(s):  
Yu-Jun Xia ◽  
Yan Shen ◽  
Lang Zhou ◽  
Yong-Bing Li

Abstract Weld expulsion is one of the most common welding defects during resistance spot welding (RSW) process especially for high strength steels (HSS). In order to control and eventually eliminate weld expulsion in production, accurate assessment of the expulsion severity should be the first step and is urgently required. Among the existing methods, real-time monitoring of RSW-related process signals has become a promising approach to actualize the online evaluation of weld expulsion. However, the inherent correlation between the process signals and the expulsion intensity is still unclear. In this work, a commonly used process signal, namely the electrode displacement and its instantaneous behavior when expulsion occurs are systematically studied. Based upon experiments with various electrodes and workpieces, a nonlinear relation between the weight of expelled metal and the sudden displacement drop accompanied by the occurrence of weld expulsion is observed, which is mainly influenced by electrode tip geometry but not by material strength or sheet thickness. The intrinsic relationship between this specific signal feature and the magnitude of expulsion is further explored through geometrical analysis, and a modified analytical model for online expulsion evaluation is finally proposed. It is shown that the improved model could be applied to domed electrodes with different tip geometries and varying workpieces ranging from low carbon steel to HSS. The error of expulsion estimation could be limited within ±20.4 mg (±2σ) at a 95% confidence level. This study may contribute to the online control of weld expulsion to the minimum level.


2016 ◽  
Vol 64 (2) ◽  
pp. 425-434 ◽  
Author(s):  
M. Jafari Vardanjani ◽  
A. Araee ◽  
J. Senkara ◽  
J. Jakubowski ◽  
J. Godek

Abstract Few aspects of shunting effect have been studied so far. Shunting effect in resistance spot welding (RSW) occurs when the electrical current passes through the previous spot welds. Value of this current depends mostly on distance, number, and size of previous spot welds. This will cause some dimensional and metallurgical changes in welding nugget as well as heat affected zone (HAZ). In this study, shunting effect of RSW is considered by finite element method (FEM) and the results are compared to experiments performed on aluminum alloy 2219. Weld spacing together with welding current and time are considered to discover the effect of shunting current in the final quality of nugget. A three factor experiment design has been performed to find the significance of factors and interactive effects, as well as finite element model verification. Electrothermal and mechanical interactions are considered in the FEM. Experimental and numerical solutions have yielded similar results in terms of welding nugget properties. Asymmetry in electrical potential, temperature, stress distribution and geometry of shunted nugget is predicted and verified directly or indirectly. Intense effect of shunting current on nugget height, asymmetric growth of heat affected zone (HAZ) toward previous welding nugget, as well as concentration of alloying elements along grain boundaries are also discovered.


2010 ◽  
Vol 61 (7) ◽  
pp. 684-688 ◽  
Author(s):  
Ranfeng Qiu ◽  
Hongxin Shi ◽  
Keke Zhang ◽  
Yimin Tu ◽  
Chihiro Iwamoto ◽  
...  

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Yu-Jun Xia ◽  
Yan Shen ◽  
Lang Zhou ◽  
Yong-Bing Li

Abstract Weld expulsion is one of the most common welding defects during the resistance spot welding (RSW) process, especially for high strength steels (HSS). In order to control and eventually eliminate weld expulsion in production, accurate assessment of the expulsion severity should be the first step and is urgently required. Among the existing methods, real-time monitoring of RSW-related process signals has become a promising approach to actualize the online evaluation of weld expulsion. However, the inherent correlation between the process signals and the expulsion intensity is still unclear. In this work, a commonly used process signal, namely, the electrode displacement and its instantaneous behavior when expulsion occurs are systematically studied. Based upon experiments with various electrodes and workpieces, a nonlinear correlation between the weight of expelled metal and the sudden displacement drop accompanied by the occurrence of weld expulsion is observed, which is mainly influenced by electrode tip geometry but not by material strength or sheet thickness. The intrinsic relationship between this specific signal feature and the magnitude of expulsion is further explored through geometrical analysis, and a modified analytical model for online expulsion evaluation is finally proposed. It is shown that the improved model could be applied to domed electrodes with different tip geometries and varying workpieces ranging from low carbon steel to HSS. The error of expulsion estimation could be limited within ±20.4 mg (±2σ) at a 95% confidence level. This study may contribute to the online control of weld expulsion to the minimum level.


Sign in / Sign up

Export Citation Format

Share Document