scholarly journals Correlation of solar power prediction considering the nominal operating cell temperature under partial shading effect

Measurement ◽  
2019 ◽  
Vol 147 ◽  
pp. 106878
Author(s):  
Pedram Asef ◽  
Ramon Bargallo ◽  
A.E. Hartavi Karci ◽  
Payam Niknejad ◽  
M.R. Barzegaran ◽  
...  
2021 ◽  
Vol 1726 ◽  
pp. 012022
Author(s):  
Andhika Giyantara ◽  
Wisyahyadi ◽  
Rifqi Bagja Rizqullah ◽  
Yun Tonce Kusuma Priyanto

2021 ◽  
Vol 11 (15) ◽  
pp. 6887
Author(s):  
Chung-Hong Lee ◽  
Hsin-Chang Yang ◽  
Guan-Bo Ye

In recent years, many countries have provided promotion policies related to renewable energy in order to take advantage of the environmental factors of sufficient sunlight. However, the application of solar energy in the power grid also has disadvantages. The most obvious is the variability of power output, which will put pressure on the system. As more grid reserves are needed to compensate for fluctuations in power output, the variable nature of solar power may hinder further deployment. Besides, one of the main issues surrounding solar energy is the variability and unpredictability of sunlight. If it is cloudy or covered by clouds during the day, the photovoltaic cell cannot produce satisfactory electricity. How to collect relevant factors (variables) and data to make predictions so that the solar system can increase the power generation of solar power plants is an important topic that every solar supplier is constantly thinking about. The view is taken, therefore, in this work, we utilized the historical monitoring data collected by the ground-connected solar power plants to predict the power generation, using daily characteristics (24 h) to replace the usual seasonal characteristics (365 days) as the experimental basis. Further, we implemented daily numerical prediction of the whole-point power generation. The preliminary experimental evaluations demonstrate that our developed method is sensible, allowing for exploring the performance of solar power prediction.


Author(s):  
Vat Sun ◽  
Attakorn Asanakham ◽  
Thoranis Deethayat ◽  
Tanongkiat Kiatsiriroat

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 689 ◽  
Author(s):  
Tyler McCandless ◽  
Susan Dettling ◽  
Sue Ellen Haupt

This work compares the solar power forecasting performance of tree-based methods that include implicit regime-based models to explicit regime separation methods that utilize both unsupervised and supervised machine learning techniques. Previous studies have shown an improvement utilizing a regime-based machine learning approach in a climate with diverse cloud conditions. This study compares the machine learning approaches for solar power prediction at the Shagaya Renewable Energy Park in Kuwait, which is in an arid desert climate characterized by abundant sunshine. The regime-dependent artificial neural network models undergo a comprehensive parameter and hyperparameter tuning analysis to minimize the prediction errors on a test dataset. The final results that compare the different methods are computed on an independent validation dataset. The results show that the tree-based methods, the regression model tree approach, performs better than the explicit regime-dependent approach. These results appear to be a function of the predominantly sunny conditions that limit the ability of an unsupervised technique to separate regimes for which the relationship between the predictors and the predictand would differ for the supervised learning technique.


Sign in / Sign up

Export Citation Format

Share Document